
Towards Understanding and Improving
Security-Relevant Web Application Logging

Merve Sahin, Noemi Daniele
SAP Security Research

merve.sahin@sap.com,noemi.daniele@sap.com

ABSTRACT
Logging of security-relevant events is crucial in software develop-
ment to gain visibility into the application’s runtime, and to de-
tect suspicious andmalicious behavior. Various security guidelines
(such as ISO 27002, CCM)mandate the software products to log cer-
tain security-relevant events for forensics purposes. In addition,
security community (such as the OWASP Foundation) has come
up with similar logging recommendations. On the other hand, the
lack of sufficient and proper logging practices has been common
in the software industry: In fact, “insufficient logging and monitor-
ing” has been part of the OWASP Top 10 web application security
risks for many years.

In this paper, we address the issue of insufficient security log-
ging by identifying the security-relevant logging requirements from
multiple security guidelines, and by looking at real-world logging
practices in a large set of open source Java web applications. We
analyze six logging guidelines and identifymore than 33K security-
relevant logging statements from 472 applications, with respect
to different event categories. We present several observations on
the log density, positioning, severity levels, use of logging utili-
ties, and the common motivations for security-relevant logs. Our
results show that the handling of security logs is not differentiated
from the rest of the logging activity, and the current practices are
not sufficient to facilitate the detection and investigation of secu-
rity related issues. Finally, we draw attention to the need for more
practical logging guidelines and automated tools to support devel-
opers in logging decisions.
ACM Reference Format:
Merve Sahin, Noemi Daniele. 2024. Towards Understanding and Improv-
ing Security-Relevant Web Application Logging. In ACM Asia Conference
on Computer and Communications Security (ASIA CCS ’24), July 1–5, 2024,
Singapore, Singapore. ACM, New York, NY, USA, 16 pages. https://doi.org/
10.1145/3634737.3637647

1 INTRODUCTION
Airplanes are deployed with flight recorders that record the cock-
pit audio and flight data from various sensors. These devices pro-
vide invaluable information in case of a plane crash to understand
what went wrong and how the mistakes can be avoided next time.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0482-6/24/07
https://doi.org/10.1145/3634737.3637647

Application-layer software logging is of similar importance: It pro-
vides valuable information about the activities and events that oc-
cur during an application’s runtime [49]. One of the main mo-
tivations for application-layer logging is to collect the security-
relevant events. This data enables the detection and investigation
of security incidents (e.g., forensic analysis), and can be used to
prove compliance with security standards or regulations (e.g., as
an audit trail) [21].

In this paper we focus on the security-relevant logging in web
applications, motivated by the fact that Security Logging and Mon-
itoring Failures is one of the top ten most critical security risks
for web applications, as reported by the OWASP Foundation [46].
There might be different reasons for the lack of proper security log-
ging. For instance, previous studies identify the following issues.
First, logging constitutes yet another concern for the developers
in addition to various responsibilities such as functionality, per-
formance, time-to-market; which often take a higher priority [12].
Second, developers might be responsible for a small part of the
software and might lack a holistic view, which makes it difficult
to know what is important to log [67]. Similarly, when the logging
guidelines are not clear, developers might make personal decisions
on how and what to log [27, 66].

In addition, web applications often have the access logs gener-
ated by the web server or proxy that record the HTTP requests and
responses. Developersmight think that such access logs would pro-
vide enough information for forensics and auditing purposes, ig-
noring the need for custom application event logging [49]. While
some of the web attacks (such as injection attempts [50]) can be
detected via access logs or Web Application Firewalls (WAF) that
intercept and analyze the HTTP traffic, other types of attacks (such
as the exploitation of business logic flaws [54] and access control
vulnerabilities [53]) may not be immediately visible in the HTTP
traffic.Moreover, web server logsmay exclude the payload ofHTTP
POST requests due to the data volume and privacy concerns [22].
For such cases, application-layer logging and monitoring remain
crucial to gain better visibility into the runtime. Indeed, the appli-
cation possesses the most detailed information about the context
of an event, such as the user details, permissions, actions taken by
the user, outcomes, and the reasons for failures – that may not be
available in other log sources [23, 49].

Considering all these challenges, our work aims to better under-
stand the web application layer security logging. In particular, we
aim to shed light on the following research questions.
RQ1. Which security events need to be logged in an applica-
tion as a baseline? It is important for development teams to have
a logging guideline of what and how to log [21]. While the devel-
opment team can decide on the application-specific logging points,

https://doi.org/10.1145/3634737.3637647
https://doi.org/10.1145/3634737.3637647
https://doi.org/10.1145/3634737.3637647

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Merve Sahin, Noemi Daniele

there are a number of security events common to most applica-
tions. Most of the existing security guidelines attempt to list such
events. However, these lists of high level descriptions of logging
requirements can become difficult to keep track of. It’s important
to understand the commonalities and the gaps between the exist-
ing guidelines, and to come up with a set of security events that
can be used as a baseline. In this paper, we make a first analysis
of some of the commonly used guidelines to extract their logging
requirements.

Although there exists a study on the logging specifications for
healthcare applications [37], to the best of our knowledge, this is
the first study to analyze the generic security logging guidelines.
RQ2.What are the current security logging practices? It’s im-
portant to understand the current security logging practices to see
how they can be improved. While previous studies analyze log-
ging practices (such as the use of logging utilities, log levels, log
locations) in general [19, 25], there are no studies that focus on
security-relevant logs.
RQ3. What is the added benefit of application-layer secu-
rity logging, with respect to the HTTP access logs? As men-
tioned earlier, HTTP access logs might be considered sufficient
for forensics or auditing purposes. However, application-layer logs
can provide more detailed information about the context of a secu-
rity event.We aim to understandwhich events developers often log
at the application layer, and how the application-layer logs comple-
ment HTTP access logs in terms of the visibility of the events and
application context.

We start our study by analyzing the security events that are
required to be logged by six different security guidelines. By an-
alyzing these six sources, we identify a set of events that cover
all the listed requirements. We categorize these events under six
main topic categories. This allows to see how the guidelines over-
lap, what they focus on, and what they miss.

We then use this list of events to extract a set of security-relevant
keywords, mainly focusing on four of the six topics: authentication,
authorization, abnormal behavior, and cryptography. Using these
keywords, we look into 5,371 open source Java web applications to
identify security-relevant logging statements in their source code.
We identify 2,502 repositories with at least one security-relevant
logging statement and select 472 repositories for further inspec-
tion. Overall, we analyze 33,934 logging statements in variousways.

Our main contributions and findings are as follows.
• A preliminary analysis of security logging guidelines:

We provide a first analysis of logging requirements in se-
curity guidelines, in a comparative way. We find that, de-
spite some overlaps, the guidelines focus on different set of
events that are often vaguely described. This might make
it very difficult for the developers to comply with multiple
guidelines and produce high quality logs.

• Identifying the common security logging practices:We
propose a method to identify open source web applications
and security-relevant logs at a large scale. This allows us
to make a first analysis of security-relevant logging in the
wild. We observe that security-relevant logging is not differ-
entiated from the rest of the logging activity, and identify
various practices that might be problematic. For instance,

we find that security-relevant events are often logged as de-
bug/trace logs, which might be disabled in a production en-
vironment. Moreover, the use of security specific log levels
or logging utilities are very rare, which might complicate
the automated processing of security logs.

• Understanding the need for application-layer security
logging: By making a manual analysis of 400 logging state-
ments, we exemplify events and contextual information that
cannot be easily observed in the HTTP traffic, thus requir-
ing application-layer logging. We also draw attention to the
lack of forensic-readiness in the current practices.

2 RELATED WORK
There is a large body of literature in the software engineering field
that analyze where, what, and how to log, and propose methods to
recommend log locations or improve the existing logs [27, 30].

In the security field, most studies focus on creating attack prove-
nance graphs from different log sources, and address the related
problems such as dependency explosion and the semantic gap be-
tween logs [29, 41, 43, 65]. These studies mainly make use of the
system audit logs (i.e., OS level operations) that can be overwhelm-
ingly high-volume and that lack the high-level semantics to under-
stand what actually happened in the application layer [65]. Bates
et al. [14] propose to extend the provenance idea for web services,
by parsing and interpreting the communication protocols such as
SOAP and SQL. Finally, Shen et al. [60] analyzes the access-deny
logs in server software, and proposes a static analysis basedmethod
to help developers identify the missing logging locations, and the
variables that need to be logged to understand the reason of the
access deny.

Our study, on the other hand, takes a broader look at the se-
curity relevant events that should be logged by the application,
e.g., for monitoring and compliance purposes. Application logs can
provide further insights into what is happening internally in the
application, and can help to obtain more precise and meaningful
information for attack detection and analysis.

In this section we make a best effort to summarize the most
relevant works to our study:

Security-relevant logging. A line of related work focuses on
the event types that need to be logged for forensics purposes. King
et al. [37] aim to improve the Electronic Health Record (EHR) sys-
tems, by collecting and comparing the existing logging specifica-
tions from 16 different sources. Authors find a discrepancy between
the healthcare-related and non-healthcare-related specifications,
and observe that 13 of the 16 specifications should be considered
together, in order to achieve a 100% logging coverage of all security
events. In this work we make a similar analysis, but focusing on
web application logging. In a related study [38], authors analyze
the logs generated by four open source EHR systems via a set of
black-box test cases, and identify that certain user interactions are
not logged.

Another study [36] proposes to use natural language software
artifacts (such as ’software requirements specifications’ or ‘user
guides’) to extract verb-object pairs that describe an action that

Towards Understanding and Improving
Security-Relevant Web Application Logging ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

must be logged. Studying three different open source software sys-
tems, authors define 12 heuristics (such as CRUD actions, permis-
sion and session related actions). Similarly, [57] proposes a ma-
chine learning assisted tool to extract security requirements (such
as confidentiality, integrity) from software artifacts. Finally, Ortiz
et al. [58] aims to identify security-relevant logging locations, with
the help of software misuse sequence diagrams created by a secu-
rity engineer. The diagrams are then annotated with the informa-
tion related to the software, and used in combination with the con-
trol flow graph of the application to identify the appropriate log lo-
cations. While this approach considers application specific misuse
scenarios, it requires considerable amount of manual work. More-
over, it assumes that security incidents result in access or modifi-
cation of sensitive data in the database. Such approaches can be
helpful to identify application-specific security events, while our
work aims to enumerate a set of generic security events common
to all applications.

Analyzing logging practices. Another line of related work in-
cludes studies that analyze logging practices in open source and/or
industry software. Yuan et al. [64] studies four open source projects
(incl. source code, commit logs, revision history, bug reports) to
see how developers modify the logging related code pieces in time.
They find that 36% of the log messages have been modified at least
once, and 98% of modifications are to change either the static con-
tent, the logged variables, or the log verbosity.The deletion or mov-
ing of the logging code is found to be very rare. Another study by
Fu et al. [25] analyzes two large industrial software to identify the
main logging locations (e.g., exceptions, return value check, asser-
tion check, logic branch). Moreover, they conduct a survey on 54
developers to understand how they determine where to log. This
study finds that logging decision is often related to the semantic
functionality and context of the code snippet. For instance, certain
keywords in source code are found to relate to higher logging ra-
tios. Another interesting finding is that the developers often make
logging decisions in the scope of function or block level, while the
overall application logic and security related factors are considered
less.

Pecchia et al. [52] analyze the source code and log entries in a
large-scale critical industry software, to understand how and why
developers log. They find a lack of standardized event logging and
formatting. The three main purposes of logging are found to be ex-
ecution tracing, event reporting, and dumping the execution state.
Finally, Chen et al. [19] conduct a quantitative study on the degree
of adoption of different Logging Utilities (LUs) among the 11K Java
projects collected from GitHub. They compare the number of ex-
ternal and internal LUs used across different projects, with respect
to the project size. They find that more than 95% of projects use
ELUs (External Logging Utility), while ILUs (Internal Logging Util-
ities) are used in 12% of small projects, growing to 92% of use in
very large projects. The study also gives insights about the differ-
ent motivations behind the use of internal and external LUs.

Our study also makes various analyses of logging practices and
related source code tokens. However, different from the previous
work, we focus onweb application-layer, and security-relevant log-
ging.

3 PRELIMINARY ANALYSIS OF SECURITY-
RELEVANT LOGGING REQUIREMENTS

Web applications deal with various types of security-relevant
events depending on their functionality and context. While some
of these events are application specific, there are certain compo-
nents (such as user authentication) that are common tomany appli-
cations. In this section, we aim identify a baseline for the security-
relevant events that should be logged, in order to answer our first
research question RQ1. For this, we make a qualitative analysis on
the commonly accepted industry guidelines and security controls.

Indeed, software companies often need to comply with several
standards, guidelines, and controls, to be able to operate in mul-
tiple countries and industries1. These guidelines recommend cer-
tain security-relevant events to be logged for forensics and inci-
dent response purposes. An example method that contains such a
security-relevant event is given in Figure 1. This method checks
the validity of a password reset token and generates a log if the
user tries to reset the password with an expired token.

As mentioned earlier, while web applications may involve a di-
verse set of security-relevant events, the industry guidelines aim
to provide a common basis for security logging best practices. This
section analyzes five such industry recognized guidelines (ISO/IEC
27002, FedRAMP, NIST, ACSC, CCM) and also the set of security-
relevant events listed by OWASP, to come up with a baseline of
security events. We explain the nature of these sources below:

ISO/IEC 27002 is a series of information security controls from
International Organization for Standardization (ISO), based on com-
monly accepted best practices [32]. It mainly provides implemen-
tation guidelines to be certified with the ISO 27001 information se-
curity management standard. Note that, ISO/IEC 27017 [31] guide-
line that focuses on cloud services also refers to ISO/IEC 27002 for
logging requirements.

NIST Special Publication (SP) 800-series guidelines are a
series of cybersecurity related guidelines, recommendations, and
specifications from National Institute of Standards and Technol-
ogy (NIST) in the US [44]. While the guidelines consist of a large
variety of topics2, we focus on SP 800-92 [34] that focuses on ‘Com-
puter Security Log Management’, and SP 800-53 [45] that is about
‘Security and Privacy Controls for Information Systems and Orga-
nizations’.

FedRAMP (Federal Risk and Authorization Management Pro-
gram) is a government-wide program in the US that provides a se-
curity assessment and continuous monitoring framework for the
cloud services and service providers. We refer to the FedRAMP
ContinuousMonitoring StrategyGuide [11] that lists a set of events.
We also include FedRAMP’s Q&A for cloud service providers [40]
in this analysis.

ACSC (Australian Cyber Security Centre) is a government body
that provides information security guidelines for organizations.We
refer to the Information Security Manual (ISM) [9] that also out-
lines an event logging policy.

1See for instance: https://aws.amazon.com/compliance/programs/,
https://www.atlassian.com/trust/compliance/resources,
https://www.sap.com/about/trust-center/certification-compliance.html,
https://www.oracle.com/corporate/cloud-compliance/
2https://pages.nist.gov/NIST-Tech-Pubs/SP800.html

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Merve Sahin, Noemi Daniele

private boolean isValidResetToken(Sysprop s, String key, String token) {
if (StringUtils.isBlank(token)) {

return false;
}
if (s != null && s.hasProperty(key)) {

String storedToken = (String) s.getProperty(key);
// tokens expire afer a reasonably short period ~ 30 mins
long timeout = (long) CONF.passwordResetTimeoutSec() * 1000L;
if (StringUtils.equals(storedToken, token) && (s.getUpdated() + timeout) > Utils.timestamp()) {

return true;
} else {

logger.info("User {} tried to reset password with an expired reset token.", s.getId());
}

}
return false;

}

Figure 1: Example method containing a security-relevant event. Application: scoold, Java file: SigninController.java [5]

CLOUDCONTROLSMATRIX (CCM) is a set of security con-
trols and implementation guidelines for cloud services, proposed
by the Cloud Security Alliance (CSA) [10].

OWASP (OpenWeb Application Security Project) is a nonprofit
organization that provides open source resources (guidelines, tools,
documentations, trainings) to improve security. OWASP is sup-
ported by a large online community and several industry members.
In this work we refer to the OWASP Logging Cheat Sheet [49].

Remarks:
We first want to emphasize that we do not aim to make an exten-

sive systematization of all logging requirements from all available
security guidelines. For instance, we exclude the logging require-
ments from industry-specific standards (such as PCI-DSS [28] for
payment industry, HIPAA [63] for healthcare industry), and pri-
vacy related law and regulations (such as GDPR [6]). Our analy-
sis is not exhaustive, however, it covers some of the most com-
mon global guidelines (such as ISO 27002, CCM, OWASP), as well
as government-based sources from different countries (e.g., ACSC
from Australia, NIST and FedRAMP from the US). Our purpose is
to make a preliminary analysis that will be helpful in the second
part of the study. At the same time, we identify various issues with
the guidelines, and draw attention to the need for further studies
in this domain.

Second, the guidelines and frameworks we analyze differ in na-
ture:While OWASP focuses onweb application security, FedRAMP
and CCM focus on cloud service providers and applications. On
the other hand, ISO 27002, NIST SP 800, and ACSC aim to pro-
vide generic information security guidelines. However, even these
generic security guidelines mention events that apply in the con-
text of web applications, such as ‘failed authentication’.

Another important point is that, all the guidelines recommend
organizations to do their own threat modeling exercise to identify
and log the security events specific to their business (on top of the
generic recommendations). However, as the ideal case of threat
modeling may not always happen, the list of events mentioned in
the guidelines forms a minimum baseline and a starting point for
the developers. We analyze these events to understand their cov-
erage and the main topics they address.

3.1 Method.
For this qualitative analysis, we first go through all the mentioned
resources, to extract the text relevant to the security events that
are recommended to be logged. We skim all the chapters of the
guidelines, and identify the chapters related to logging and moni-
toring. We further search for keywords such as ‘logging’,‘auditing’,
‘logged’, ‘log’, ‘audit’, ‘record’, ‘monitor’ to find any other relevant
text3. We extract these pieces of raw text from the guidelines into
a separate document.

The guidelines often mention the events dispersedly in different
sections, which makes the identification of the events more diffi-
cult. Moreover, the events often do not follow a certain order or cat-
egorization, and they are described very broadly (e.g., “any autho-
rized access”, “input validation failures”). Although some sources
provide examples for the events, most of the time there is no de-
tailed explanation about the scope of the event.

In the next step, we extract the list of events that are required
to be logged for each guideline. In this process we keep the event
descriptions as is, however, we separate the descriptions into in-
dependent units when necessary. For instance, FedRAMP recom-
mends to log ‘addition or removal of users’. We divide this event
description into two separate events that are ‘addition of users’ and
’removal of users’.

In the third step, we group together the event descriptions that
have the same or similar meaning, from different guidelines. For
instance: we could group the following five event descriptions:

• “attempted access that is denied” (ACSC),
• “records of […] rejected data and other resource access at-

tempts” (ISO 27002),
• “failed accesses related to systems” (NIST),
• “invalid access attempts” (CCM),
• “Authorization (access control) failures” (OWASP)
• “ Failed attempts to access data and system resources” (ACSC
- Operating system related section)

3Note that, we ignore the chapters related to privacy (e.g., handling of PII data), and
related to the storage, processing, and security of generated logs, as they are out of
scope for our study.

Towards Understanding and Improving
Security-Relevant Web Application Logging ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

• “Unsuccessful attempted access” (ACSC - Database related
section)

into one event, that is, ”Failed authorization attempts”.
We provide the output of this step in Appendix A: It includes all

the event groupings, with reference to the related raw text from
each guideline.

After the first grouping of the event descriptions, we further
categorize the events according to their context.The categories are
as follows:

• Authentication: Contains events related to users’ account
management, authentication and session management.

• Authorization: Contains events related to access control, man-
agement of privileges and permissions.

• Abnormal Behavior: Contains the unexpected events that
the developers could anticipate, and embedmonitoring points
in the code (such as input validations, checks for fraud at-
tempts).

• Cryptography: Relates to management and use of crypto-
graphic keys and modules.

• Data & User Transactions: Relates to the logging of any in-
teraction with the application/business data, such as user
input and database transactions.

• Operational Events: Contains events related to the opera-
tion of the application, and its interaction with other layers
such as the operating system and network connections.

Note that this categorization is not definitive, i.e., other ways of
categorization would be possible. However, we think that it sum-
marizes the main topics that the guidelines address.

In the final step, we present all the events we identified from the
six sources in a comparative way, in Table 1. For each event, the ta-
ble shows if a guideline explicitly includes the event (denoted with
), or if it mentions the event in a limited context (denoted with
G#). An example of limited context is with ACSC, which mentions
most of the events to be logged in either the operating system or
database layers, rather than the application layer. Another exam-
ple is CCM,which recommends to log the addition of new accounts
only for the accounts with root or administrative privileges.

Caveats. Although we aim to separate the events into indepen-
dent units, the event descriptions from the guidelines sometimes
overlap. For instance, FedRAMP recommends to log “authorization
checks”, but does not specifically mention successful and failed au-
thorization attempts. Similarly, NIST and CCM recommend to log
“key management activities” but they do not specifically mention
the “management of key changes”. It would be possible to further
group such overlapping events, however, that would blur the lines
of whether an event is included in a guideline. Thus, for the sake
of clarity and avoiding subjective decisions, we preferred to not
group the overlapping events.

A note on Events vs. Alerts. The security-relevant events do
not have to directly relate to an ongoing attack. Sometimes, a se-
quence of different events might indicate an attack that needs to
be alerted. Such correlations and the writing of attack signatures
are often handled by incident response teams, e.g., using Security
information and Event Management (SIEM) tools that analyze ag-
gregated log data. As an example, multiple failed log-on attempts
from different users can be correlated, which might indicate a pass-
word spraying or credential stuffing attack. Or, the logging of a file

upload event can help the incident response team to analyze the
exploit of an XML External Entity (XXE) vulnerability [55], which
leads to arbitrary file read on the system. Our work aims to iden-
tify such events that could be helpful in attack investigation. As
mentioned earlier, application specific threat modeling and under-
standing of the attack landscape can help to better decide which
events need to be logged.

A note on Success and Failure events. In terms of the log
volume, one might think that the successful events do not need
to be logged. However that is often not true: Recording the suc-
cess events -such as the list of users successfully authenticated to
a system- can be necessary for auditing and forensic analysis in
the long term [21]. Moreover, success events may directly relate
to attacks. For instance, if a regular user successfully executes a
function that requires administrative rights, this might be result
of a privilege escalation attack. Thus, a security-relevant event can
be both a success, or a failure event. In relation to this, Chuvakin
et al. [21] distinguishes between ‘critical’ and ‘accounting’ logs.
They categorize the failures and high severity attack attempts as
critical logs that require immediate action. The success events, sta-
tus messages, and low impact attack probes are categorized as ac-
counting logs that do not require immediate action.

3.2 Observations from the guidelines.
Table 1 presents our results containing 57 types of events in 6 cate-
gories. Our first observation from Table 1 is that, although there is
some overlap, different guidelines focus on different set of events.
Thus, compliance with one guideline may not mean that all the im-
portant events are logged. Moreover, it might be difficult for the de-
velopers to pinpoint the overlaps, as the guidelines provide descrip-
tions in different formats and terminology, and in a coarse-grained
and high-level manner (e.g., ‘system events’ or ‘data changes’). In
the future work, we aim to investigate developers’ experiences in
complying with such guidelines.

While all the guidelines cover authentication and authorization
related events to a greater extent, most of them do not mention
monitoring of abnormal behavior such as input validation failures,
or suspicious activity. We observe that only one event is recom-
mended by all the guidelines, which is, the logging of successful
authentications. We find that OWASP provides the most compre-
hensive list of events, possibly because it specifically focuses on
web applications, rather than providing generic recommendations.

We can see that even the baseline of requirements in Table 1 in-
volve a large number of events to consider. On top of this, develop-
ment teams need to think of the application-specific logging needs,
and make sure that the security logs contain the right amount in-
formation for forensics and auditing purposes, and they use the
right verbosity level. Indeed, complying with the guidelines and
producing high quality, forensics-ready logs seem to be a very chal-
lenging task.

In the next section, we look at real-world source code to under-
stand the current security logging practices in the wild. In partic-
ular, we use the list of events in Table 1 to come up with a set of
keywords to identify the security-relevant logs.

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Merve Sahin, Noemi Daniele

ISO 27002 NIST ACSC FEDRAMP CCM OWASP
Successful authentications
Failed authentication attempts
Log-off
Assignment of users to tokens
Addition of new tokens
Removal of tokens
Creation of new users / accounts G# G#

AUTHENTICATION Deletion of users / accounts G#
Account modifications G# G#
Changes to authentication mechanisms
Account management events G#
Authentication checks
Credential usage
Successful authorizations G#
Failed authorization attempts
Authorization checks
Privilege assignment
Use of privileges and privileged functions G#

AUTHORIZATION Administrative activity G#
Changes to permissions G#
Changes to privileges G#
Attempts to elevate privileges / permissions G#
Access to (important) data and objects G#
Input validation failures G#
Output validation failures
Potential integrity violation

ABNORMAL Session management failures
BEHAVIOR Sequencing failures

Suspicious, unexpected behavior
Fraud and other criminal activities
Excessive usage
Use of data encrypting keys

CRYPTOGRAPHY Management of key changes
Key management activities
User transactions, requests and responses G#
Database queries G#
Database failures G#
Changes to database structure G#

DATA & USER Modifications to data G#
TRANSACTIONS Data deletions

Data access
Import and export of data
Submission of user generated content
File accesses
Application / system startup G#
Application / system shutdown G#
Configuration changes
Application failures and errors
Application code file / memory changes
File system errors

OPERATIONAL System events
EVENTS Process tracking

Use and management of network connections
Creation and removal of system level objects
Performance issues
Connectivity problems
Third party service errors

Table 1: List of events extracted from the guidelines. denotes that event is explicitly included, G# denotes that the event is
mentioned in a limited context.

Towards Understanding and Improving
Security-Relevant Web Application Logging ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

4 SECURITY-RELEVANT LOGGING IN THE
WILD

In this section we aim to look into the real-world security-relevant
logging practices in open source web applications. In particular,
we focus on the Java programming language for several reasons:
Java is one of the most popular programming languages [61, 62],
commonly used for enterprise applications [16]. In addition, Java
frameworks like Spring Security provide a mature enterprise appli-
cation security layer [15] to handle most of the security relevant
events. Thus, we believe that Java web applications can be a more
reliable source of security-relevant logging compared to other lan-
guages. Moreover, previous work that study the logging practices
in Java applications [19, 20] provide us a well-grounded baseline
for our analyses.

4.1 Data collection
4.1.1 Application selection. We start with a list of public GitHub
Java repositories collected fromGHTorrent, made available byChen
et al. in [19]-[18]. This list contains 83,082 repositories with more
than 5 stars, last updated on 2019-06-01. Among these, we select
the repositorieswith at least 15 stars, corresponding to 43,986 repos-
itories. We then download the source code of the most recent ver-
sions (as of 2022-11-24) of these repositories using GitHub APIs.

To be able to focus on the repositories withweb components, we
check if there is at least one Java file in the repository that imports
one of the back-end Java web framework libraries.The libraries we
look for are org.springframework.web, javax.servlet,
org.apache.struts, org.apache.wicket, and play.mvc. (Note
that we do not include libraries that only provide web clients such
as HttpCLient, or HttpUrlConnection.) Some frameworks use
other frameworks or libraries in the background. For instance, Sling [7]
uses javax.servlet andVaadin [8] uses Spring to deal withHTTP
requests. Thus, our method covers these frameworks as well. This
method of eliminating the repositories without web components
yields 5,371 repositories thatwe further analyze for security-relevant
logging statements.

4.1.2 Identifying the security-relevant logs. In this section we de-
vise a heuristic-based technique to identify security-relevant log-
ging statements. Note that, we do not claim to identify all of such
statements, as this would require manual analysis of the projects.
Our purpose is to automatically identify as many logging state-
ments as possible, with high precision (i.e., minimizing the false
positives).

We define a security relevant logging statement, as a (i) logging
statement that includes a (ii) security-relevant keyword.

(i) Identification of logging statements.
We aim to identify the logging statements in two different for-

mats. First, we look at the logging statements that use a logging
utility (LU), which is a library or framework providing various
functionality related to application logging (such as formatting,
configuration, storage)4. The logging statements using such util-
ities often follow the pattern of:
<logger_object>.<log_level>(<log_description>)5.
4Examples of commonly used logging frameworks in Java are log4j, logback, SLF4J.
However, the application developers can also create their custom logging utility.
5e.g., logger.debug(”User registration failed. Password is not strong enough.”);

We use regular expressions to match this pattern, and make sure
that the <logger_object>.<log_level> part contains the ‘log’ or
‘SLF4J’ keywords6. After manual inspection, we update our reg-
ular expression to eliminate words that lead to false positives in
this part, such as ‘catalog, blog, logo, analog, dialog, logical’.

The second pattern we look for is the standard output stream
functions of Java, such as System.out.println(<log_description>)7.

Finally, we remove the logging statements from certain Java files
(e.g., when the file name contains ‘audit, logger, slf4j, log4j, test’
words) that are likely to only include logging configuration, tem-
plates, or unit tests.

(ii) Identification of security-relevant keywords.
To identify the security-relevant logging statements, we check

if the <log_description> part of the statement contains at least
one security-relevant keyword. In order to identify the security-
relevant keywords, we first look at the logging requirements col-
lected in Section 3. We find that, for Authentication, Authoriza-
tion, Abnormal Behavior, and Cryptography categories, it is more
straightforward to come up with a specific set of keywords that
could identify security-relevant logs with high precision. This is
more difficult for the other two categories: For instance in the Data
&User Transactions category, data fields, file names and parameter
names can be arbitrary strings. Moreover, the Operational Events
& Failures category contains very generic event descriptions such
as ‘system events’ or ‘application failures’. Thus, we focus on the
first four categories in the rest of the analysis.

Combining the event descriptions from guidelines and our do-
main knowledge on the common terminology and attack types, we
select the following keywords:

• General security context: security, audit.
• Authentication related keywords: authen, cookie, credential,

password, accesstoken, access token, login, logout, logoff,
log in, log out, log off.

• Authorization related keywords: authoriz, authoris, role, priv-
ilege, permission, accessright, access right, access granted,
access denied.

• Abnormal Behavior related keywords: invalid, fraud, suspi-
cio, tamper, excessive, violat, risk, threat, malicious, exploit,
attack, vuln, insecur, unsafe, xxs, xxe, csrf, ssrf, denial, brute,
abnormal, anomal, protected, expir, injection.

• Cryptography related keywords: crypt, certificate.
A note on the audit keyword. Auditing refers to the process of

verifying whether a system follows a set of requirements (which
are part of a regulation or a policy) that the system needs to comply
with [21]. The logs that are generated for auditing purposes are of-
ten called the audit logs. For instance, an audit log can aim to hold
a user accountable for their actions, by recording each event to-
gether with the user’s identifier [13]. As the compliance and foren-
sics related logs might be tagged with the audit keyword, we in-
clude it in our keyword list.

4.1.3 Selecting the final dataset. With themethod described above,
we find that 2,502 of the 5,371 Java repositories have at least one

6Note that, SLF4J serves as an abstraction layer to several logging frameworks in Java
(e.g. java.util.logging, logback, log4j) [56]. As it does not contain the word ‘log’, we
include it separately in the regular expression.
7e.g., System.out.println(userName + ”’s password has been changed”);

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Merve Sahin, Noemi Daniele

security-relevant logging statement. However, the total number of
security logs remains low for most of the repositories: More than
half of the repositories (1,253) contain at most 5 logging statements.
To further increase the quality of the dataset, we eliminate some
of the repositories according to three criteria: The total number of
security-relevant logs, the security log density (number of security-
relevant logs divided by total number of lines of code), and the secu-
rity log file density (the number of files with a security log divided
by the total number of files in the project). We plot the histograms
and decide the following threshold values: number of logs > 5, log
density > 0.0003, file density > 0.025. This leaves us with 33,934
security-relevant logging statements from 472 repositories.

To verify the accuracy of our log identification method, we ran-
domly sample 500 logging statements and manually check if they
indeed log security-relevant events.With 95% confidence, ourmethod
yields 98±1.2% precision. Examples of false positives include setter
methods on logger objects8, or methods to store the audit logs in
a remote location 9.

As we do not manually analyze all applications to extract all
security-relevant logs, we do not know the number of false nega-
tives, and we cannot compute the recall.

In the rest of the study, we focus on these 472 repositories for
all further analysis. On average, the selected repositories have 69
(SD=164) security-relevant logging statements from 25 (SD=43) Java
files per repository. The maximum number of security logs found
in a single repository is 1,511.

4.1.4 Limitations of the approach. Our approach achieves high pre-
cision, however itmightmiss to detect some of the security-relevant
logs for the following reasons: First, it is possible that some log-
ging statements are about security-relevant events, but they do not
contain the keywords we searched for. Second, it is possible that
some projects write logs to specific files, and our current method
of matching keywords such as ‘log’ or ‘System.out.print’ might be
insufficient to catch all the logging statements.

We again emphasize that we do not claim to identify and analyze
all the Java web projects on Github, and all the security-relevant log-
ging statements they contain. This would require manually analyz-
ing all the projects. Our purpose is to gather a relatively large dataset
(472 projects, 33K+ logging statements), with high precision.

4.2 Analysis of Security Logging Practices
This section aims to answer our second research question (RQ2), by
looking at the different aspects of security-relevant logging prac-
tices used in the wild.

4.2.1 Logging Utilities. We analyze the use of Logging Utilities
(LUs) in the 472 projects, with a focus on the security-relevant logs.

To identify the LUs, we extract the import statements in the
source code that relate to logging related keywords such as log,
logging, logger, audit, log4j, slf4j. In addition to collect-
ing all the LUs, we separately extract the LUs involved in the security-
relevant logging statements.

8e.g., (i) wikiLog.setWe_user_idx(loginUser.getWeUserIdx());
(ii) xTrxLog.setObjectClassType(AppConstants.CLASS_TYPE_PASSWORD_CHANGE);
9e.g., applicationAuditLogger.sendMessage(oAuth2AuditLog);

Similar to [19], we merge the logging utilities with the same
package name in the top three levels: For instance:
de.metas.logging.LogManager and de.metas.logging.TableRecordMDC
are merged into de.metas.logging as a single logging utility.

Results. Among the 472 projects, we find that 95% (448) make
use of LUs, and 88% (415) make use of LUs for security-relevant
logs. In general, a project uses 2.5 (SD=1.3) different LUs on aver-
age. For security relevant logs, average number of LUs per project
is 1.5 (SD=0.8). Thus, around half of the LUs in a project are used
for security logging.

Looking at the number of distinct LUs across all projects, we find
that security logs use 116 distinct LUs out of the total 230, again
corresponding to a half.

External and internal LUs. Following the previous work by
Chen et al. [19], we define a logging utility as internal if it is devel-
oped inside the project, and external if it is used as a third party
library. In their study, Chen et al. analyzes the motivations behind
the use of external and internal LUs in software [19].They find that
external LUs are often used for general purpose logging, and some-
times to interact with LUs from imported packages. They also find
that the common reasons for developers to implement their own
internal LUs are: defining a custom logging format, ease of config-
uration, and providing a common interface for different external
LUs. Thus, we can say that, while external LUs are often used for
general purpose logging, internal LUs are likely to be created for
better customization of logging format and configuration.

In our context of security-relevant logs, we want to analyze if
external LUs (general-purpose logging utilities) were sufficient for
developers, or if they rather implemented internal LUs that could
allow more customization.

For this, we look into the 415 projects that use LUs for both
generic and security logging purposes: We find that 65% (272) of
projects only use external LUs, 31% (128) use a mixture of inter-
nal and external LUs, and 4% (15) only use internal LUs. However,
when it comes to security-relevant logs: 81% (335) of the projects
use only external LUs, 14% (60) use a combination of external and
internal, and only 5% (20) use internal LUs alone.

We further analyze all the internal LUs used in security-relevant
logs, to see if any of them were specifically developed to handle
security events. We find that only 4% (15) of the projects use a
specific-purpose internal LU that include ‘security’ or ‘audit’ key-
words somewhere in the imported package name. Moreover, all
these projects also use other external LUs for security logging.

Takeaway: Our analysis shows that developers most of-
ten use general-purpose logging utilities for security-relevant
logs. The development of security-specific LUs is very rare,
and even in their existence, they are combined with other LUs
in handling the security logs.

4.2.2 Analysis of Log Severity Levels. Log levels aim to categorize
the logs according to the purpose of the log (e.g., debugging) and its
severity (e.g., a failure or warning that needs to be addressed). Log-
ging utilities often provide a number of log levels that are config-
ured by default. Having carefully chosen log levels can help the in-
cident respondents to better decide when to act, and to reduce the

Towards Understanding and Improving
Security-Relevant Web Application Logging ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

alert fatigue [39]. Previous work finds that developers often need
to re-adjust log levels as an afterthought, to optimize the cost/ben-
efit tradeoff of logging [64]. In practice, more verbose levels (info,
debug, trace) are likely to be used during the software development
phase, and to be disabled during deployment [27].

This section aims to analyze the use of log levels in security-
relevant logging statements. We extract the log levels using regu-
lar expressions. As the different external and internal LUs in our
dataset use slightly different naming for log levels, we combine the
similar log level names to unify the naming: For instance, we com-
bine “w, warn, warning, logwarn, logwarning, auditwarn” into a
single category of “warn”.

With this approach, 90% of logs are matched to eight main cat-
egories of log levels. 5% of logs use standard output without a
log level. The remaining 5% use custom method names without a
clear log severity level, such as: .log(), .logevent(), .logall(),
.recordevent(), .settext(). However, some of these include
the severity level within the log description. By searching for re-
lated keywords, we were able to extract the data for an additional
3% of logs.

Figure 2 summarizes the results from 93% of logs, with the 8
main categories of log levels. We see that around 38% of the logs
use the debug or trace levels, which are aimed for fine-grained
tracing and troubleshooting. These findings confirm the phenome-
non described by Chuvakin et al. [21] as “the debugging logs mas-
querading as security audit logs”: They suggest that debugging
logs are more common in application logs compared to properly
designed security audit logs, however, as they often miss the nec-
essary details, they cannot be used in security investigations.More-
over, these logs might be disabled in production due to their high
verbosity level that may lead to performance, memory or noise
concerns.

Another 38% of logs correspond to log levels with low verbosity
and high criticality (such as ‘error, warn, severe, fatal’). However,
we do not find any custom or specific log level related to security.
Only 1.2% of logs include the ‘audit’ keyword in the log level.

Takeaway: We observe that security logging is not differ-
entiated from the rest of the logging activity, and security
logs often do not contain a specific tag that could make their
processing more straightforward.

4.2.3 Logging Locations. In this section we analyze the types of
code blocks in which security-relevant logs are located. We use the
PROGEX [26] tool to identify the log location using the Abstract
Syntax Tree (AST) representation of the Java source code. For 80%
(26,975) of logging statements, we were able to successfully extract
the type of code block.

Figure 3 depicts the results categorized under four types of code
constructs: looping, selection, exception handling, and directlywithin
the method or block. We find that majority of the security-relevant
logs (55%) are located in a decision making block.This might be ex-
pected, as various security checks (e.g., authentication, authoriza-
tion) are likely to be made via decision making constructs such as
if-else or switch-case. Moreover, 22% of security logs are located
in a catch block, and 16% are located directly inside a method.

de
bu

g
err

or inf
o

warn tra
ce

sev
ere

ve
rbo

se fat
al

Log levels

0%

5%

10%

15%

20%

25%

30%

Ra
tio

 o
f l

og
gi

ng
 st

at
em

en
ts

Figure 2: Log levels of security-relevant logs.

0% 10% 20% 30% 40% 50%
Ratio of logging statements

Decision
 making

Direct

Exception

Looping
FOR/WHILE
CATCH
TRY
METHOD
IF-ELSE
SWITCH-CASE

Figure 3: Logging locations.

We then take a deeper look into the types of exceptions caught
in the catch blocks, where a security-relevant log is present. Our
dataset contains 6,070 such catch blocks. We analyze the catch
clauses, and whether the caught exception names include one of
the security-relevant keywords we identified. Table 2 gives the
top five most common exceptions and their percentages, for the
two cases of exceptions (security-relevant and not). We can see
that most of the logging statements (84%) reside in non-security-
relevant, often generic exception catch blocks.

Takeaway: We find that most of the security-relevant log-
ging statements are located in clauses that follow a decision
making (branching) or exception try/catch statement. This
shows that developers often log after checking whether a cer-
tain condition holds, or after the code blocks that might fail
and raise an exception. However, our analysis on the excep-
tion catch statements again indicate a lack of specific consid-
eration and handling of security-relevant events.

4.2.4 Event categories. The logging statements in our dataset re-
late to different types of security events. With a naive approach,
we can correlate a logging statement to one of the event categories

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Merve Sahin, Noemi Daniele

Security-relevant (16% overall) Non-security-relevant (84% overall
1 PermissionException (2%) Exception (35%)
2 AuthenticationException (1%) IOException (5%)
3 CertificateException (1%) NumberFormatException (4%)
4 AuthorizationDeniedException (1%) IllegalArgumentException (3%)
5 SecurityException (0.8%) Throwable (3%)

Table 2: Top 5 most common exceptions seen in the catch
clauses where the security logs reside.

3970

8637

121

7902

62

138

4
10005

289

509
3

377

4

8

0

Authentication
Authorization

Abnormal Behavior
Cryptography

Figure 4: Venn diagram of the number of logs from the four
categories.

(Authentication, Authorization, Abnormal Behavior, Cryptography),
if the statement contains the respective keywords identified in Sec-
tion 3. It is also possible that one logging statement relates to more
than one event category. For instance, the following statement10
logs an abnormal behavior related to authentication: log.info(”Replay
attack detected - DENYING authentication request”);

Figure 4 shows a Venn diagram of the number of logs from the
four event categories, and how they overlap. We observe that the
largest portion of the logs (33%) relate to Authentication events,
followed by Abnormal Behavior (28%) and Authorization (25%) cat-
egories. The largest overlaps are between Authentication & Autho-
rization and Authentication & Abnormal Behavior.

Takeaway: While most of the logging guidelines we an-
alyzed in Table 1 put less focus on the Abnormal Behavior
category in comparison to Authentication and Authorization,
we observe that the portions of logs in these categories are
similar in real-world practice.

4.2.5 Methods containing the security logs. In this section we ana-
lyze the methods that include the security-relevant logging state-
ments. In particular, we expect these methods to contain security-
relevant code. Note that, as coding practices in the wild may not
be perfect, a method might be dealing with more than one func-
tionality, having low functional cohesion. Thus, a method with a
logging statement of a certain event category (e.g. Authentication)
10Example taken from: https://github.com/vmware-archive/lightwave

might also include other types of events that need to be logged. In
other words, there could be a one-to-many relationship between
the methods and the event categories.

For this analysis, we convert each method to a set of keyword
tokens, excluding the logging statements and Java-specific keywords,
and splitting the CamelCase strings. We then check if the method
tokens include any of the security-relevant keywords we selected.

We find that 90% of themethods that have a logging statement in
Authentication category also include authentication-relevant key-
words in the method tokens. This ratio is 86% for Authorization
and 93% for Cryptography categories. For these categories, Natural
Language Processing (NLP) based techniques such as topic analy-
sis [42], or classifiers that use term frequency analysis [25] can
have a high success rate in suggesting logging locations.

On the other hand, for the Abnormal Behavior category, only
51% of the methods include tokens with the searched keywords.
This is expected, as this category covers a large variety of events
and the keywords related to abnormal behavior are less likely to
be found in the source code. Thus, developing an automated log
recommendation system might be more difficult for this category.

Takeaway: We find that, for certain event categories such
as Authentication and Cryptography, the source code tokens
can be useful to identify the code blocks that require logging.

4.3 The need for application-layer security
logging

As briefly explained in Section I, web applications often have ac-
cess logs generated by the web server, containing the HTTP re-
quest and responses. The information captured in HTTP access
logs depends on the log configuration, however, theoretically it
can include the full HTTP transaction such as the request and re-
sponse body, and headers [33]. With this information, Web Appli-
cation Firewalls or similar security analytics software can correlate
the logs, infer various events (such as failed authentication), and
look for attack patterns (such injection attempts) [47].

Developers may rely on HTTP access logs for part of the log-
ging requirements. On the other hand, application-layer logs have
the potential to provide more information about the internal state
of the application and business logic related issues, which are not
necessarily visible in the access logs.

In this section, we aim to answer the third research question
(RQ3), that is to understand the added benefit of application-layer
logging for security. We aim to find out the common reasons that
developers log at the application layer, and how these logs can
complement the HTTP access logs in terms of the contextual in-
formation they provide.

For this analysis, we randomly sample 100 logging statements
from each of the four categories (400 in total) and manually review
the logging statements (and their methods, when necessary). Our
observations per category are as follows.

Authentication category: 43% of the authentication related
logs give information about the status of authentication attempts

Towards Understanding and Improving
Security-Relevant Web Application Logging ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

@PostMapping(path = "/account/reset-password/init")
public void requestPasswordReset(@RequestBody String mail) {

Optional<User> user = userService.requestPasswordReset(mail);
if (user.isPresent()) {

mailService.sendPasswordResetMail(user.get());
} else {

//Pretend the request has been successful to prevent checking which emails really exist
//but log that an invalid attempt has been made
log.warn("Password reset requested for non existing mail");

}}

a) Application: jhipster-sample-app-hazelcast, Java file: AccountResource.java [4].

if ((Arrays.binarySearch(roles, realmConfig.getAdminRoleName()) > -1 || isRoleHasAdminPermission) &&
!realmConfig.getAdminUserName().equals(loggedInUserName)) {

log.warn("An attempt to assign user to Admin permission role by user : " +
loggedInUserName);

throw new UserStoreException("Can not assign user to Admin permission role");
}

b) Application: carbon-identity-framework, Java file: MultipleCredentialsUserProxy.java [2].

HttpResponse<InputStream> response = callGetPayment(paymentId, configuration, paymentContext.getConfigurationLevel());
if(HttpUtils.callSuccessful(response)) {

return processRemotePayment(transaction, paymentId, purchaseContext, configuration, response);
} else {

if(response.statusCode() == 404) {
log.warn("Received suspicious call for non-existent payment id "+paymentId);
return PaymentWebhookResult.notRelevant("");

}

c) Application: alf.io, Java file: MollieWebhookPaymentManager.java [1].

@Override
public void checkClientTrusted(X509Certificate[] chain, String authType) throws CertificateException {

try {
defaultViPRTrustManager.checkClientTrusted(chain, authType);

} catch (CertificateException e) {
log.debug("Client certificate was not trusted by default trust manager, checking accept all certs config.

Certificate: "+ chain[0]);
// if setting for accepting all connections is set to true
if (KeyStoreUtil.getAcceptAllCerts(coordConfigStoringHelper)) {

log.warn("The following certificate is not trusted." + chain[0]);
} else {

log.debug("Accept all certs is set to false, the certificate will not be trusted", e);
throw e;

}}}

d) Application: coprhd-controller, Java file: ViPRX509TrustManager.java [3].

Figure 5: Example code pieces that motivate custom application logging.

such as login failures and successes. Although these events are of-
ten captured in the access logs, an important contextual informa-
tion that application-layer logs can provide is the reason for fail-
ures. Our sample dataset includes various reasons such as invalid
cookie, failure to connect to the authentication server, and failure
to decrypt the password. However, only 26% of the authentication
failure related logs provide the reason.

The second most common theme is the issues related to pass-
word reset or update requests (19%). An interesting event observed

in two different applications is to log the password change/reset re-
quests for non-existing users. Figure 5-(a) shows an examplemethod,
where the application pretends that the password reset email is
sent to the non-existing user, instead of returning an error in the
HTTP response. This way, the application aims to prevent user
enumeration attacks (i.e., attacks trying to find out the registered
users [24]). This invalid attempt will only be logged by the appli-
cation, as it cannot be observed in the HTTP access logs.

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Merve Sahin, Noemi Daniele

Authorization category: Similar to the previous category,most
of the authorization related logs are about the status of access re-
quests, such as denied or granted access (44%). The second most
common case is to log various information about a requested role
(29%). An interesting example is given in Figure 5-(b), where the
application logs a suspicious attempt to assign admin role to a user.
This attempt may not be obvious in HTTP traffic, unless a specific
response is returned.

Abnormal Behavior category: 56% of the statements in our
sample log invalid values (such as parameters, configuration, data-
base query, password). The second most common case is to log
expired credentials and access/session tokens (11%). Again, the rea-
sons for validation failures and expirations may not be visible in
HTTP access logs. An interesting example is shown in Figure 5-
(c): The application interacts with a third-party payment service,
and generates a log in case the payment service returns an error
due to a non-existing payment ID. This condition might indicate
a parameter tampering attempt [48]. While the HTTP logs might
show that the payment has failed, they may not capture the actual
reason for the error (i.e., “invalid payment ID”), which means less
information will be available for attack investigation.

Cryptography category: 55% of the statements in our sample
relate to the creation, deletion, and use of certificates, and the er-
rors happening during this process. Moreover, 24% of logs give in-
formation about the encryption or decryption processes and keys.
Figure 5-(d) shows an example where the application logs whether
it accepts an untrusted certificate, after checking the connection
settings. Again, such information may not be visible to the web
server, as it relates to the internal configuration of the application,
and the client’s certificate will be accepted.

These examples show the necessity of custom application-layer
security logging in gaining visibility into the application runtime,
and why HTTP logs alone may not be enough for attack detection
and investigation.

On the other hand, among the 400 logging statements that we
analyze manually, we find that 24% do not log any variables, and
only 31% include an identity variable related to the user, session, or
resource. Thus, from a forensics perspective, it’s likely that these
logs also miss certain data that could be useful in attack investiga-
tions.

5 DISCUSSION
Our study starts with the observation that insufficient logging and
monitoring is one of the most common application security risks.
Ourwork reveals threemain challenges related to security-relevant
logging.

The first challenge (revealed through RQ1 and RQ3) is to make
sure that all the necessary security events are logged. Our
analysis on guidelines (Section 3) shows that a large number of
events needs to be considered, even before thinking of the application-
specific issues. Moreover, the analysis in Section 4.3 shows that
developers cannot just rely on HTTP access logs for all security-
relevant events, and application-layer logging is a necessity.

The second challenge is the ability to easily filter out the
security-relevant logs. While answering RQ2, we find that dif-
ferentiating the security-relevant logs from the rest of the logging

activity is very difficult. We find that the logs rarely have a security
specific tag or log level, moreover, most of the events are logged at
the debug level, using generic logging utilities.

The third challenge is to make sure that important informa-
tion is not missing in the logs. This is a challenging problem,
and our preliminary analysis in Section 4.3 shows that most of the
logs fail to include important information such as user ids and rea-
sons for failures.

We believe that these challenges can be addressed with better
quality logging guidelines and automated methods to support de-
velopers in logging decisions.

The guidelines can be improved to explain the reasoning be-
hind the events that need to be logged, providing examples of the
different types security issues and attacks related to these events.
For instance, the guidelines could explain that an invalid cookie
should be logged, as it might indicate the tampering of the HTTP
requests. A recent study [59] that interviews developers about their
logging practices also notes that more than 60% of the developers
would wish for pragmatic logging guidelines and automated log-
ging tools.

Although many studies aim to automate or improve logging
(e.g., by recommending log locations or adding the missing vari-
ables to be logged), these studies often do not consider security-
relevant logging [17, 27], or focus on a specific issue (such as per-
mission over-granting [60]). Our work shows that the use of NLP
techniques based on security-relevant code tokens can be promis-
ing for this task. Finally, only few studies address the forensicabil-
ity of logs (e.g., for non-repudiation [35]) and forensic-readiness
of software systems [51, 58]. We believe that further efforts are
needed to develop methods to define, measure, and ensure the
forensicability of the application-layer logging statements.

6 CONCLUSION
In this paper we study the problem of insufficient security logging
in web applications. We start by analyzing several security logging
guidelines, extracting a set of events that need to be considered as
a baseline. We draw attention to the difficulty of complying with
the abstract requirements in the guidelines and making sure that
the logs include the right amount of information for attack inves-
tigation. We then make a large scale analysis of security-relevant
logging statements in 472 Java applications. Our analysis demon-
strates the importance of application-layer security logs and sug-
gests possible areas of improvement; such as the use of specific
log levels or identifiers, to distinguish security logs from the rest
of the logging activity and to make them easier to process by the
incident response teams. Finally, our work shows the need for fu-
ture research to better identify the forensics related requirements
in security-relevant logs, and to develop newmethods to automate
or facilitate the logging of the necessary information.

ACKNOWLEDGMENTS
This work has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under project TESTABLE,
grant agreement No 101019206.

Towards Understanding and Improving
Security-Relevant Web Application Logging ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

REFERENCES
[1] alf.io. https://github.com/alfio-event/alf.io/.
[2] carbon-identity-framework. https://github.com/wso2/carbon-identity-

framework.
[3] coprhd-controller. https://github.com/CoprHD/coprhd-controller.
[4] jhipsterHazelcastSampleApplication. https://github.com/jhipster/jhipster-

sample-app-hazelcast.
[5] Scoold - Stack Overflow in a JAR. https://github.com/Erudika/scoold/.
[6] Complete guide to GDPR compliance. https://gdpr.eu/, 2022.
[7] Apache sling - bringing back the fun! https://sling.apache.org/, 2023.
[8] Build java web applications faster with vaadin. https://vaadin.com/, 2023.
[9] Australian Cyber Security Center. Information Security Manual.

https://www.cyber.gov.au/resources-business-and-government/essential-
cyber-security/ism, DECEMBER 2021.

[10] Cloud Controls MatrixWorking Group, Cloud Security Alliance. Cloud Controls
Matrix v4.0.5. https://cloudsecurityalliance.org/artifacts/cloud-controls-matrix-
v4/, July 2021.

[11] FedRAMP. FedRAMP Continuous Monitoring Strategy Guide Version
3.2. https://www.fedramp.gov/assets/resources/documents/CSP_Continuous_
Monitoring_Strategy_Guide.pdf, April 2018.

[12] YaseminAcar, Sascha Fahl, andMichelle LMazurek. You are Not Your Developer,
Either: A Research Agenda for Usable Security and Privacy Research Beyond
End Users. In 2016 IEEE Cybersecurity Development (SecDev), pages 3–8. IEEE,
2016.

[13] Sepehr Amir-Mohammadian, Stephen Chong, and Christian Skalka. Correct
audit logging: Theory and practice. In Frank Piessens and Luca Viganò, editors,
Principles of Security and Trust, pages 139–162, Berlin, Heidelberg, 2016. Springer
Berlin Heidelberg.

[14] Adam Bates, Wajih Ul Hassan, Kevin Butler, Alin Dobra, Bradley Reaves, Patrick
Cable, Thomas Moyer, and Nabil Schear. Transparent web service auditing via
network provenance functions. In Proceedings of the 26th International Confer-
ence on World Wide Web, WWW ’17, page 887–895, 2017.

[15] Luke Taylor Ben Alex. Spring Security. https://docs.spring.io/spring-security/
site/docs/3.1.x/reference/springsecurity-single.html, 2022.

[16] Ivan Blagojević. Most popular programming languages. https://99firms.com/
blog/most-popular-programming-languages/#gref, 2023.

[17] Jeanderson Cândido, Jan Haesen, Maurício Aniche, and Arie van Deursen. An
exploratory study of log placement recommendation in an enterprise system.
Proceedings - 2021 IEEE/ACM 18th International Conference on Mining Soft-
ware Repositories, MSR 2021, 2021.

[18] Boyuan Chen and Zhen Ming Jiang. Replication package. https://www.
eecs.yorku.ca/~chenfsd/resources/icse2020_replication.zip, 2020. Accessed:
02/02/2023.

[19] Boyuan Chen and Zhen Ming Jiang. Studying the use of java logging utilities in
the wild. In 2020 IEEE/ACM 42nd International Conference on Software Engineer-
ing (ICSE), pages 397–408. IEEE, 2020.

[20] Boyuan Chen and Zhen Ming Jack Jiang. Characterizing logging practices in
java-based open source software projects–a replication study in apache software
foundation. Empirical Software Engineering, 22(1):330–374, 2017.

[21] A. Chuvakin, K. Schmidt, and C. Phillips. Logging and Log Management: The
Authoritative Guide to Understanding the Concepts Surrounding Logging and Log
Management. Elsevier Science, 2012.

[22] Anton Chuvakin and Gunnar Peterson. Logging in the age of web services. IEEE
Security Privacy, 7(3):82–85, 2009.

[23] Anton Chuvakin and Gunnar Peterson. How to do application logging right.
IEEE Security Privacy, 8(4):82–85, 2010.

[24] CodePath. Username Enumeration. https://guides.codepath.com/websecurity/
Username-Enumeration, 2023. Accessed: 12/01/2023.

[25] Qiang Fu, Jieming Zhu, Wenlu Hu, Jian-Guang Lou, Rui Ding, Qingwei Lin,
Dongmei Zhang, and Tao Xie. Where do developers log? an empirical study
on logging practices in industry. In Companion Proceedings of the 36th Inter-
national Conference on Software Engineering, page 24–33, New York, NY, USA,
2014.

[26] Seyed Mohammad Ghaffarian. PROGEX (Program Graph Extractor). https://
github.com/ghaffarian/progex, 2019.

[27] Sina Gholamian and Paul Ward. A comprehensive survey of logging in software:
From logging statements automation to log mining and analysis. June 2022.

[28] Lindsay Goodspeed. PCI DSS v4.0 Resource Hub. https://blog.
pcisecuritystandards.org/pci-dss-v4-0-resource-hub, MARCH 2022.

[29] Wajih Ul Hassan, Mohammad A. Noureddine, Pubali Datta, and Adam Bates.
Omegalog: High-fidelity attack investigation via transparent multi-layer log
analysis. In NDSS, 2020.

[30] ShilinHe, PinjiaHe, Zhuangbin Chen, Tianyi Yang, Yuxin Su, andMichael R. Lyu.
A survey on automated log analysis for reliability engineering. ACM Comput.
Surv., 54(6), July 2021.

[31] ISO/IEC. ISO/IEC 27017:2015 Information technology — Security techniques
— Code of practice for information security controls based on ISO/IEC 27002

for cloud services. iso27017https://www.iso.org/standard/43757.html, 2015. Ac-
cessed: 08/03/2022.

[32] ISO/IEC. ISO/IEC 27002:2022 Information security, cybersecurity and pri-
vacy protection — Information security controls. https://www.iso.org/standard/
75652.html, 2022. Accessed: 15/05/2022.

[33] Ivan Ristić. Mod Security Handbook: Getting Started - Audit Log.
https://www.feistyduck.com/library/modsecurity-handbook-free/online/ch04-
logging.html, 2017. Accessed: 05/01/2023.

[34] Murugiah Souppaya Karen Kent. NIST SP 800-92 guide to computer security
log management. https://csrc.nist.gov/publications/detail/sp/800-92/final, 2006.
Accessed: 15/05/2022.

[35] Jason King. Measuring the forensic-ability of audit logs for nonrepudiation. In
2013 35th International Conference on Software Engineering (ICSE), pages 1419–
1422, 2013.

[36] Jason King, Rahul Pandita, and LaurieWilliams. Enabling forensics by proposing
heuristics to identify mandatory log events. In Proceedings of the 2015 Sympo-
sium and Bootcamp on the Science of Security, pages 1–11, 2015.

[37] Jason King and Laurie Williams. Cataloging and comparing logging mechanism
specifications for electronic health record systems. In 2013 USENIXWorkshop on
Health Information Technologies (HealthTech 13), Washington, D.C., August 2013.
USENIX Association.

[38] Jason King and Laurie Williams. Log your crud: design principles for software
logging mechanisms. In Proceedings of the 2014 Symposium and Bootcamp on the
Science of Security, pages 1–10, 2014.

[39] Rafal Kuć. Understanding logging levels: What they are & how to use them.
https://sematext.com/blog/logging-levels/, 2022.

[40] LaTisha Raulston-Sloderbeck. FedRAMP Weekly Tips And Cues – November
14, 2018. https://cfocussoftware.com/office-365-government/fedramp-weekly-
tips-cues-november-14-2018/, November 2018.

[41] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. High accuracy attack prove-
nance via binary-based execution partition. In 20th Annual Network and Dis-
tributed System Security Symposium, NDSS 2013, San Diego, California, USA, Feb-
ruary 24-27, 2013. The Internet Society, 2013.

[42] Heng Li, Tse-Hsun Peter Chen, Weiyi Shang, and Ahmed E Hassan. Studying
software logging using topicmodels. Empirical Software Engineering, 23(5):2655–
2694, 2018.

[43] Shiqing Ma, Xiangyu Zhang, and Dongyan Xu. Protracer: Towards practical
provenance tracing by alternating between logging and tainting. In 23rd An-
nual Network and Distributed System Security Symposium, NDSS 2016, San Diego,
California, USA, February 21-24, 2016. The Internet Society, 2016.

[44] NIST. NIST special publication 800-series general information. https:
//www.nist.gov/itl/publications-0/nist-special-publication-800-series-general-
information, 2018. Accessed: 15/05/2022.

[45] NIST Joint Task Force. NIST SP 800-53 rev.5 security and privacy controls for in-
formation systems and organizations. https://csrc.nist.gov/publications/detail/
sp/800-53/rev-5/final, 2020. Accessed: 15/05/2022.

[46] OWASP. OWASP Top 10:2021. https://owasp.org/Top10/, 2021. Accessed:
15/02/2022.

[47] OWASP. OWASP ModSecurity Core Rule Set. https://coreruleset.org/, 2023.
Accessed: 05/01/2023.

[48] OWASP. Web Parameter Tampering. https://owasp.org/www-community/
attacks/Web_Parameter_Tampering, 2023. Accessed: 12/01/2023.

[49] OWASP CheatSheets Series Team. Logging Cheat Sheet. https://
cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html, 2021. Ac-
cessed: 04/07/2022.

[50] OWASPTop 10 Team. A03:2021 – Injection. https://owasp.org/Top10/A03_2021-
Injection/, 2021. Accessed: 04/07/2022.

[51] Liliana Pasquale, Dalal Alrajeh, Claudia Peersman, Thein Tun, Bashar Nuseibeh,
and Awais Rashid. Towards forensic-ready software systems. In Proceedings of
the 40th International Conference on Software Engineering: New Ideas and Emerg-
ing Results, ICSE-NIER ’18, page 9–12. Association for Computing Machinery,
2018.

[52] Antonio Pecchia, Marcello Cinque, Gabriella Carrozza, and Domenico Cotroneo.
Industry practices and event logging: Assessment of a critical software develop-
ment process. In 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, volume 2, pages 169–178, 2015.

[53] PortSwigger. Access control vulnerabilities and privilege escalation. https://
portswigger.net/web-security/access-control, 2023. Accessed: 02/01/2023.

[54] PortSwigger. Business logic vulnerabilities. https://portswigger.net/web-
security/logic-flaws, 2023. Accessed: 02/01/2023.

[55] PortSwigger. XML external entity (XXE) injection. https://portswigger.net/web-
security/xxe, 2023. Accessed: 02/01/2023.

[56] QOS.CH. Simple Logging Facade for Java (SLF4J). https://www.slf4j.org/.
[57] Maria Riaz, Jason King, John Slankas, and LaurieWilliams. Hidden in plain sight:

Automatically identifying security requirements from natural language artifacts.
In 2014 IEEE 22nd International Requirements Engineering Conference (RE), pages
183–192, 2014.

https://github.com/alfio-event/alf.io/
https://github.com/wso2/carbon-identity-framework
https://github.com/wso2/carbon-identity-framework
https://github.com/CoprHD/coprhd-controller
https://github.com/jhipster/jhipster-sample-app-hazelcast
https://github.com/jhipster/jhipster-sample-app-hazelcast
https://github.com/Erudika/scoold/
https://gdpr.eu/
https://sling.apache.org/
https://vaadin.com/
https://www.cyber.gov.au/resources-business-and-government/essential-cyber-security/ism
https://www.cyber.gov.au/resources-business-and-government/essential-cyber-security/ism
https://cloudsecurityalliance.org/artifacts/cloud-controls-matrix-v4/
https://cloudsecurityalliance.org/artifacts/cloud-controls-matrix-v4/
https://www.fedramp.gov/assets/resources/documents/CSP_Continuous_Monitoring_Strategy_Guide.pdf
https://www.fedramp.gov/assets/resources/documents/CSP_Continuous_Monitoring_Strategy_Guide.pdf
https://docs.spring.io/spring-security/site/docs/3.1.x/reference/springsecurity-single.html
https://docs.spring.io/spring-security/site/docs/3.1.x/reference/springsecurity-single.html
https://99firms.com/blog/most-popular-programming-languages/#gref
https://99firms.com/blog/most-popular-programming-languages/#gref
https://www.eecs.yorku.ca/~chenfsd/resources/ icse2020_replication.zip
https://www.eecs.yorku.ca/~chenfsd/resources/ icse2020_replication.zip
https://guides.codepath.com/websecurity/Username-Enumeration
https://guides.codepath.com/websecurity/Username-Enumeration
https://github.com/ghaffarian/progex
https://github.com/ghaffarian/progex
https://blog.pcisecuritystandards.org/pci-dss-v4-0-resource-hub
https://blog.pcisecuritystandards.org/pci-dss-v4-0-resource-hub
iso 27017 https://www.iso.org/standard/43757.html
https://www.iso.org/standard/75652.html
https://www.iso.org/standard/75652.html
https://www.feistyduck.com/library/modsecurity-handbook-free/online/ch04-logging.html
https://www.feistyduck.com/library/modsecurity-handbook-free/online/ch04-logging.html
https://csrc.nist.gov/publications/detail/sp/800-92/final
https://sematext.com/blog/logging-levels/
https://cfocussoftware.com/office-365-government/fedramp-weekly-tips-cues-november-14-2018/
https://cfocussoftware.com/office-365-government/fedramp-weekly-tips-cues-november-14-2018/
https://www.nist.gov/itl/publications-0/nist-special-publication-800-series-general-information
https://www.nist.gov/itl/publications-0/nist-special-publication-800-series-general-information
https://www.nist.gov/itl/publications-0/nist-special-publication-800-series-general-information
https://csrc.nist.gov/publications/detail/sp/800-53/rev-5/final
https://csrc.nist.gov/publications/detail/sp/800-53/rev-5/final
https://owasp.org/Top10/
https://coreruleset.org/
https://owasp.org/www-community/attacks/Web_Parameter_Tampering
https://owasp.org/www-community/attacks/Web_Parameter_Tampering
https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html
https://owasp.org/Top10/A03_2021-Injection/
https://owasp.org/Top10/A03_2021-Injection/
https://portswigger.net/web-security/access-control
https://portswigger.net/web-security/access-control
https://portswigger.net/web-security/logic-flaws
https://portswigger.net/web-security/logic-flaws
https://portswigger.net/web-security/xxe
https://portswigger.net/web-security/xxe
https://www.slf4j.org/

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Merve Sahin, Noemi Daniele

[58] Fanny Rivera-Ortiz and Liliana Pasquale. Towards automated logging for
forensic-ready software systems. In 2019 IEEE 27th International Requirements
Engineering Conference Workshops (REW), pages 157–163, 2019.

[59] Guoping Rong, Shenghui Gu, Haifeng Shen, He Zhang, and Hongyu Kuang.
How do developers’ profiles and experiences influence their logging practices?
an empirical study of industrial practitioners. In 2023 IEEE/ACM 45th Interna-
tional Conference on Software Engineering (ICSE), pages 855–867, 2023.

[60] Bingyu Shen, Tianyi Shan, and Yuanyuan Zhou. Improving logging to re-
duce permission over-granting mistakes. In 32nd USENIX Security Symposium
(USENIX Security 23). USENIX Association, August 2023.

[61] Erico Guizzo Stephen Cass, Preeti Kulkarni. Top Programming Languages 2022.
https://spectrum.ieee.org/top-programming-languages-2022/, 2022.

[62] TIOBE. Tiobe index for march 2023. https://www.tiobe.com/tiobe-index/, 2023.
[63] U.S. Department of Health & Human Services. The HIPAA The Security Rule.

https://www.hhs.gov/hipaa/for-professionals/security/index.html, Jan 2013.
[64] Ding Yuan, Soyeon Park, and Yuanyuan Zhou. Characterizing logging practices

in open-source software. In 2012 34th International Conference on Software Engi-
neering (ICSE), pages 102–112, 2012.

[65] Jun Zeng, Zheng Leong Chua, Yinfang Chen, Kaihang Ji, Zhenkai Liang, and
Jian Mao. Watson: Abstracting behaviors from audit logs via aggregation of
contextual semantics. In NDSS, 2021.

[66] Cheng Zhang, Zhenyu Guo, Ming Wu, Longwen Lu, Yu Fan, Jianjun Zhao, and
Zheng Zhang. Autolog: Facing log redundancy and insufficiency. In Proceed-
ings of the Second Asia-Pacific Workshop on Systems, APSys ’11. Association for
Computing Machinery, 2011.

[67] Jieming Zhu, Pinjia He, Qiang Fu, Hongyu Zhang, Michael R. Lyu, and Dongmei
Zhang. Learning to log: Helping developers make informed logging decisions.
In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,
volume 1, pages 415–425, 2015.

A GROUPING OF THE EVENT DESCRIPTIONS
FROM GUIDELINES

We provide the details of our analysis in Section 3.1, showing how
the events listed in Table 1 corresponds to the raw text collected
from the guidelines.

• Authentication Category
– Account management events

∗ Use and management of user IDs and authentication
information (ISO 27002)

∗ Account management (FEDRAMP)
∗ User or group management (ACSC-OS section)
∗ Account management events (CCM)

– Changes to authentication mechanisms
∗ Use of and changes to identification and authentication

mechanisms (CCM)
– Authentication checks

∗ Authentication checks (FEDRAMP)
∗ Authentication checks (CCM)

– Successful authentications
∗ Successful account logon (FEDRAMP)
∗ Successful account login (CCM)
∗ Log-on (ISO 27002)
∗ Logon (ACSC)
∗ Successful authentication attempts (NIST)
∗ Authentication success (OWASP)
∗ Database log-ons (ACSC-DB section)

– Failed authentication attempts
∗ Unsuccessful account logon (FEDRAMP)
∗ Unsuccessful account login (CCM)
∗ Failed authentication attempts / logons (NIST)
∗ Failed logon (ACSC)
∗ Authentication failures (OWASP)
∗ Login failures (CCM)

– Log-off

∗ Log-off (ISO)
∗ Logoff (ACSC)
∗ Database log-offs (ACSC-DB section)

– Assignment of users to tokens
∗ Assignment of users to tokens (FEDRAMP)
∗ Assigning users to tokens (OWASP)

– Addition of new tokens
∗ Addition of tokens (FEDRAMP)
∗ Adding tokens (OWASP)

– Removal of tokens
∗ Removal of tokens (FEDRAMP)
∗ Deleting tokens (OWASP)

– Creation of new users / accounts
∗ Addition of new users (ACSC-DB section)
∗ Account creation (NIST)
∗ Creation of identites (ISO 27002)
∗ Addition of users (OWASP)
∗ Addition of users (FEDRAMP)
∗ Additions to accounts with root or administrative priv-

ileges (CCM)
– Deletion of users / accounts

∗ Account deletion / removal (NIST)
∗ Deletion of identities (ISO 27002)
∗ Removal of users (FEDRAMP)
∗ Deletion of users (OWASP)
∗ Deletions to accounts with root or administrative priv-

ileges (CCM)
– Account modifications

∗ Account changes / modification (NIST)
∗ Changes to accounts (ACSC-OS section)
∗ Password changes (NIST)
∗ Modification of identities (ISO 27002)
∗ Changes to accounts with root or administrative privi-

leges (CCM)
∗ Account enabling (NIST)
∗ Account disabling (NIST)

– Credential usage
∗ PIV credential usage (NIST)
∗ External credential usage (NIST)

• Authorization
– Successful authorizations

∗ Successful system/data/resource access attempts (ISO)
∗ Successful attempted access (ACSC-DB section)
∗ When access was granted (ACSC-Personnel Security

section)
– Failed authorization attempts

∗ Failed accesses (NIST)
∗ Attempted access that is denied (ACSC)
∗ Invalid access attempts (CCM)
∗ Authorization (access control)a failures (OWASP)
∗ Rejected system/data/resource access attempts (ISO)
∗ Failed attempts to access data and system resources (ACSC-

OS section)
∗ Unsuccessful attempted access (ACSC-DB)

– Authorization checks
∗ Authorization checks (CCM)
∗ Authorization checks (FEDRAMP)

https://spectrum.ieee.org/top-programming-languages-2022/
https://www.tiobe.com/tiobe-index/
https://www.hhs.gov/hipaa/for-professionals/security/index.html

Towards Understanding and Improving
Security-Relevant Web Application Logging ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

– Privilege assignment
∗ Account privilege assignment (NIST)
∗ Access rights granted to a user ID (ISO 27002)
∗ All privileges allocated (ISO 27002)

– Use of privileges and privileged functions
∗ Use of privileges (NIST)
∗ Use of privileges (ISO 27002)
∗ Use of special privileges (ACSC-OS section)
∗ Execution of privileged functions (NIST)
∗ Privilege functions (CCM)
∗ Privilege functions (FEDRAMP)
∗ All privileged access to systems (ISO)
∗ Attempts to use special privileges (ACSC-OS section)
∗ Use of privileged access (ACSC-Personnel Security sec-

tion)
∗ Use of privileged accounts (CCM)

– Administrative activity
∗ Use of systems administrative privileges (OWASP)
∗ Access by application administrators (OWASP)
∗ All actions by userswith administrative privileges (OWASP)
∗ All administrator activity (FEDRAMP)
∗ Actions by userswith administrative privileges (FEDRAMP)
∗ Actions taken by any individual with root or adminis-

trative privileges (CCM)
∗ Administrative privilege usage (NIST)
∗ All administrator activity (CCM)
∗ Management of system administrative privileges access

(FEDRAMP)
∗ Database administrator actions (ACSC-DB section)

– Changes to permissions
∗ Changes to user roles, database permissions (ACSC-DB

section)
∗ Permission/policy changes (FEDRAMP)
∗ Permission/policy changes (CCM)

– Changes to privileges
∗ Changes to privileged accounts and groups (ACSC-Personnel

Security section)
∗ Changes to privileges (OWASP)
∗ When the level of accesswas changed (ACSC-Personnel

Security section)
∗ Management of changes to privileges (FEDRAMP)
∗ Changes to users’ logical and physical access rights (ISO

27002)
∗ Elevation of privileges (CCM)
∗ When access was withdrawn (ACSC-Personnel Secu-

rity section)
∗ Changes to privileged accounts (CCM)

– Attempts to elevate privileges/permissions
∗ Attempts to elevate privileges (ACSC-DB section)
∗ Attempts to escalate permissions (CCM)

– Access to (important) data and objects
∗ Access to important data and processes (ACSC-OS sec-

tion)
∗ Access to particularly important data (ACSC-DB sec-

tion)
∗ Object access (FEDRAMP)
∗ Object access (CCM)

∗ Individual user accesses to systems (CCM)
∗ Recording who accesses information (ISO 27002)

• Data and user transactions
– User transactions, request and responses

∗ Client requests and responses (NIST)
∗ DNS and HTTP requests (ACSC-OS section)
∗ transactions executed by users in applications (ISO 27002)

– Database queries
∗ Any query containing comments, multiple embedded

queries (ACSC-DB section)
∗ Query parameters (NIST)
∗ Search queries initiated by users (ACSC)

– Database failures
∗ Any query or database alerts or failures (ACSC-DB sec-

tion)
– Changes to database structure

∗ Changes to database structure, (ACSC-DB section)
– Modifications to data

∗ Modifications to data (ACSC-DB section)
∗ Data changes (FEDRAMP)
∗ Data changes (CCM)
∗ Data changes (OWASP)

– Data deletions
∗ Data deletions (CCM)
∗ Data deletions (FEDRAMP)

– Data access
∗ Data access (CCM)
∗ Data access (FEDRAMP)

– Import and export of data
∗ Import and export of data, including screen-based re-

ports (FEDRAMP)
∗ Data import (OWASP)
∗ Data export (OWASP)

– Submission of user generated content
∗ Submission of user-generated content, especially file

uploads (FEDRAMP)
∗ Submission of user generated content – especially file

uploads (OWASP)
– File accesses

∗ File access successful/unsuccessful (optional) (NIST)
∗ Files accessed and type of access (ISO 27002)

Abnormal behavior
– Input validation failures

∗ Input validation failures e.g., invalid parameter names
and values (OWASP)

∗ Use of manual override capability of input validation
(NIST)

– Output validation failures
∗ Output validation failures e.g., database record set mis-

match (OWASP)
– Potential integrity violation

∗ Potential integrity violation (NIST)
– Session management failures

∗ Session management failures e.g., session cookie mod-
ification (OWASP)

– Sequencing failures
∗ Sequencing failure (OWASP)

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Merve Sahin, Noemi Daniele

– Suspicious, unexpected behavior
∗ Detection of suspicious activity (CCM)
∗ Suspicious, unacceptable or unexpected behavior (OWASP)

– Fraud and other criminal activities
∗ Fraud and other criminal activities (OWASP)

– Excessive usage
∗ Usage information for security monitoring (number of

transactions in a certain period) (NIST)
∗ Excessive use (OWASP)

• Cryptography
– Use of data encrypting keys

∗ Use of data encrypting keys (FEDRAMP)
∗ Use of data encrypting keys (OWASP)
∗ Key usage (CCM)

– Key management activities
∗ Key management related activities (ISO 27002)
∗ Key generation, usage, purpose, rotation, revocation,

destruction, activation, suspension etc. (CCM)
– Management of key changes

∗ Management of key changes (FEDRAMP)
∗ Key changes (OWASP)

• Operational events
– Application/system startup

∗ Application startup (NIST)
∗ Application startup (OWASP)
∗ System startup (ASCS-OS section)

– Application/system shutdown
∗ Application shutdown (OWASP)
∗ Application shutdown (NIST)
∗ System shutdown (ACSC-OS section)

– Configuration changes
∗ Application config changes (NIST)
∗ Security/privacy attribute changes (NIST)
∗ System accesses associated with configuration changes

(NIST)
∗ Configuration changes (OWASP)
∗ Modifications to configuration (OWASP)
∗ Established configurations and changes to software, ser-

vices, networks (ISO 27002)
∗ Changes to system configuration (ISO)
∗ Changes to system configurations (ACSC-OS section)
∗ Policy change (FEDRAMP)

– Application failures and errors
∗ Application crashes and error messages (ACSC-OS sec-

tion)
∗ Application failures (NIST)
∗ Application errors (OWASP)
∗ Crashes and any error messages (ACSC)
∗ Service failures and restarts (ACSC-OS section)
∗ Syntax and runtime errors (OWASP)

– Application code file / memory changes
∗ Application code file / memory changes (OWASP)

– File system errors
∗ File system errors (OWASP)

– System events
∗ System events (FEDRAMP)
∗ System events (CCM)

∗ System events (OWASP)
– Process tracking

∗ Process tracking (CCM)
∗ Process tracking (FEDRAMP)

– Use and management of network connections
∗ Management of network connections (FEDRAMP)
∗ Use of network connections (OWASP)

– Creation and removal of system level objects
∗ Creation and removal of system level objects (FEDRAMP)
∗ Creation and deletion of system-level objects (CCM)
∗ Creation and deletion of system level objects (OWASP)

– Performance issues
∗ Performance issues (OWASP)

– Connectivity problems
∗ Connectivity problems (OWASP)

– Third party service errors (OWASP)

	Abstract
	1 Introduction
	2 Related work
	3 Preliminary analysis of security-relevant logging requirements
	3.1 Method.
	3.2 Observations from the guidelines.

	4 Security-relevant logging in the wild
	4.1 Data collection
	4.2 Analysis of Security Logging Practices
	4.3 The need for application-layer security logging

	5 Discussion
	6 Conclusion
	Acknowledgments
	References
	A Grouping of the event descriptions from guidelines

