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Abstract. Deception is a form of active defense that aims to confuse
and divert attackers who try to tamper with a system. Deceptive tech-
niques have been proposed for web application security, in particular, to
enrich a given application with deceptive elements such as honey cook-
ies, HTTP parameters or HTML comments. Previous studies describe
how to automatically add and remove such elements into the application
traffic, however, the elements themselves need to be decided manually,
which is a tedious task (especially for large-scale applications) and makes
the adoption of deception more cumbersome.
In this paper, we aim to automate the generation of deceptive HTTP
parameter names for a given web application. Such parameters should
seamlessly blend into application context and be indistinguishable from
the rest of the parameters, in order to maximize the deception effect. To
achieve this, we propose to use word embeddings trained with a domain-
specific corpus obtained from existing web application source code. We
evaluate our method through a survey, where we ask the participants to
identify the deceptive parameters in two different web applications’ APIs.
Moreover, the survey is composed of two variants in order to further
experiment with the impact of the quantity and enticement of deceptive
parameters.
The results confirm the effectiveness of our method in generating indis-
tinguishable honey parameter names. We also find that the participants’
expectation of the ratio of honey parameters remains constant, regard-
less of the actual number. Thus, a higher number of honeytokens can
provide a stronger defense. Moreover, making attackers aware of decep-
tion can help to obfuscate the real attack surface, e.g., by masquerading
more than 10% of the real application elements to look like traps. Fi-
nally, although our work focuses on the generation of parameter names,
we also discuss other related challenges in a holistic way, and provide
multiple directions for future research.
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1 Introduction

As part of a defense-in-depth strategy, deception works by confusing and mis-
leading the adversary with false information, while masking the real nature of a
system, or repackaging it to look like something else [15,18]. Various studies have
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shown that deception can be an effective defense mechanism, not only for attack
detection [43,64,19], but also for impeding the attack progress and disrupting
attackers’ emotional and cognitive state in various ways [35,34,32]. Moreover,
deception technology market has been growing in recent years [6,7], with sev-
eral commercial solutions providing data, network, application or endpoint layer
deception [70,36,21,47,13].

The focus of this study is on web application layer deception. So far, the main
idea has been to augment the application with deceptive elements (also called
honeytokens, which can be in the form of HTTP parameters, cookies, HTML
elements, permissions, or user accounts) in order to showcase a fake attack sur-
face [56,43,39,37,44,59,38]. Monitoring the modifications to the values of such
deceptive elements allows to detect attackers who are tampering with the appli-
cation in order to find vulnerabilities. For instance, a common attack vector is
called web parameter tampering, where the attacker manipulates the application
parameters exchanged between the server and client, in an attempt to modify
privileges, get access to unauthorized information, exploit business logic vulner-
abilities, or disrupt the integrity of the application data [23,55]. The attacker
may tamper with an object ID in the URL parameter to exploit an improper
access control mechanism (known as the Insecure Direct Object Reference vul-
nerability [61]); or try to modify, e.g, the price of a product sent in a hidden
form field, which was assumed to be immutable by the developer [68,55]. The
use of deceptive elements provide a reliable source of warning in such cases, as
the regular users of the application are not likely to intercept the communication
and try to tamper with application data.

Most of the previous work on application layer deception focuses on how to
add the deceptive elements with minimal effort. They use a reverse-proxy in front
of the application that adds and removes the deceptive elements on the fly, seam-
lessly, so that the application itself will not require any modifications [39,37,43].
Previous work also conducts CTF based experiments to measure the effective-
ness of application layer deception [43], including when the attackers are aware
of the presence of deception [64].

While these studies focus on automating the injection of deceptive elements
into the application, they do not really address the challenges related to the
generation of such elements, leaving this as an open research problem. In fact,
a survey on deception techniques in computer security [44] draws attention to
the lack of proper honey-token generation strategies for web applications and
cloud images. Other studies emphasize the need to create “content-oriented de-
ceptions to deceive skilled attackers in the long term” [32] and draw attention
to the difficulty of creating such context-specific elements [43]. Previous work
also finds that deceptive elements should be well intertwined with the applica-
tion functionality and logic, to be robust against the deception awareness of the
attacker [64]. In this paper, we address this research area of automatically gener-
ating realistic deceptive elements for web applications. In particular, we focus on
the automated generation of deceptive HTTP parameters, as they can be effec-
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tively used in every API endpoint, covering a large attack surface of parameter
tampering.

Deceptive HTTP parameters can be any type of HTTP parameter (such as
the query, path, body or form parameters). However, coming up with context-
specific deceptive parameters and embedding them into the application seam-
lessly accompany multiple challenges:

– How to choose realistic names for the parameters?
– How to make sure that the parameters are enticing enough?
– How to assign them plausible values?
– Where to place the parameters within an API?
– What is the optimal number of deceptive parameters?
– What should be the proper response when a certain parameter is tampered

with?

Thus, our first contribution in this paper will be to explore these six challenges,
discuss the previously used strategies and other possible approaches (Section 2).

We then focus on the first challenge, which is to automatically generate
plausible deceptive parameter names that are difficult to distinguish from the
real parameters. For this, we implement a machine learning method to generate
parameter names that will blend well into the context of a given application (Sec-
tion 3). In particular, we use word embeddings (a Natural Language Processing
technique) trained with the source code of publicly available web applications.

Finally, we evaluate the effectiveness of our method via a survey with 42 par-
ticipants (Section 4). With a questionnaire, we ask the participants to identify
the deceptive parameters in two different web applications’ APIs. Our question-
naire also experiments with two additional challenges: the amount and entice-
ment of deceptive parameters (Section 5).

In addition to showing that our method successfully generates indistinguish-
able parameter names, we make several other observations: First, we find that
the participants anticipate a certain ratio of parameters to be deceptive, regard-
less of the actual quantity of deceptive elements. Thus, adding a larger number
of deceptive elements would mean that more of them will go undetected. Second,
the addition of very obvious (conspicuous) deceptive parameters does not really
help to hide the existence of realistic ones. Third, we find that the participants
mislabel at least 10% of genuine parameters as deceptive, on average. This pro-
vides another evidence on the benefit of informing attackers about the use of
deception.

2 Challenges

One requirement for successful deception is that it “should present plausible
alternatives to the truth” [15]. This becomes even more important considering
that the attacker might be aware of the presence of deception. In this section,
we will discuss the challenges related to the generation of plausible and effective
deceptive parameters.



4 Merve Sahin, Cédric Hébert, and Rocio Cabrera Lozoya

2.1 Generating context-specific, realistic parameter names

A first step to generate indistinguishable deceptive parameters would be to de-
cide on the parameter names. Ideally, at least three requirements should be met:
(i) parameter name should fit in the context and purpose of the API endpoint,
(ii) it should indicate a certain functionality and, (iii) it should follow the naming
convention and format of the API.

Previous studies doing CTF-based experiments manually select the parame-
ter names relevant to the content of the web application [43,64], an approach that
is difficult to scale for real-world, large applications. The most relevant study on
this topic by Pohl et al. [59] aims to generate honey HTML form field names
for a given application. The approach of this study is to collect the form fields
(names and the default values, if available) by crawling the Alexa Top 10,000
websites. Authors extract 15,255 forms and 18,210 form field names. Then, they
propose an algorithm based on the Levenshtein Distance as a similarity metric,
to pick the most suitable honey form field for a given set of form elements. The
method is evaluated via 75 human subjects, where the participants are shown
50 HTML forms, knowing that half of them are containing an injected deceptive
form field. Results show that participants’ choices are significantly near random,
which means they cannot identify the forms with deceptive fields. However, this
approach has several limitations: First, it remains limited to the form param-
eters, not addressing other types of HTTP parameters. Second, as the crawler
does not have the ability to authenticate, the form fields collected in the wild
are only limited to the pre-authentication pages. Considering the difficulty of
automating the account creation and authentication processes on arbitrary web
sites, this approach is not scalable to explore the complete application context.

Overall, it remains an open problem to automatically generate different types
of deceptive HTTP parameters that would cover a large part of the applica-
tion [43]. In this paper our main focus is to address this challenge.

2.2 Ensuring the enticement of deceptive parameters

Generating a realistic parameter name does not necessarily mean that the param-
eter will be enticing for the attacker to tamper with. For instance, a parameter
named “street” might be less effective in attracting (and thus detecting) attacks
compared a parameter named “is admin”. A possible strategy to generate entic-
ing parameter names can be to simulate some of the bad REST API practices.
For instance:

– Parameters that seem to provide security (e.g., authentication, authoriza-
tion) related configurations.

– Parameters that seem to modify data that normally should not be provided
by the user (e.g., the price of an item).

– Parameters that seem to overwrite configurations or provide functionality
that affects page behavior (e.g., mode=readonly as a query parameter).
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However, more research is needed to better understand what makes a param-
eter enticing, how to measure the quality of enticement, how does this relate to
attack detection rate, and how to find the optimal level of enticement before a
parameter becomes too obviously deceptive.

Although it is not the focus of our study, we partially touch on this topic
by manually adding a set of conspicuous parameters (i.e., easily noticeable or
obvious to the attacker, as they are either too enticing or out-of-context of the
application) to one of the APIs used in our experiment. We will explain more
on this in Section 4.1. On the other hand, the deceptive parameters generated
with our machine learning approach can have different levels of enticement: while
some of our parameters might look more enticing (e.g., “bearer”), others might
look like ordinary parameters (e.g., “retry”).

2.3 Assigning default values

Each deceptive parameter that is added to the application should have a plausible
value, either static or changing dynamically. Depending on the parameter type,
the value could be, for example, an integer, a string with a fixed set of possible
values, or an array of values [9]. For instance, for a parameter named ‘superuser’,
possible values can be ‘true’/‘false’, ‘enabled’/‘disabled’, or a numerical user
identifier.

Note that the assigned value can also affect how enticing a parameter is:
For instance, assigning a random looking value (such as a hash or UUID) might
make it less enticing for the attacker, as tampering with the value would likely
break the application.

Previous studies [43,64,59] do not mention a specific strategy on assigning
values to deceptive elements. Thus, additional research is needed to explore
this topic. One approach can be to collect API documentations in the wild
to create a database of parameter names and value constraints. Research on
automatically inferring single parameter and inter-parameter constraints from
API documentations combined with static code analysis (such as [72,42]) might
also be useful to enrich such a database. Note that, our work does not address
this challenge.

2.4 Placement of deceptive parameters

As stated by Han et. al, [44], placement strategies for deceptive elements is an
under-studied topic for most of the deception techniques, and for the applica-
tion layer deception, a major obstacle is the difficulty to characterize the web
application logic.

An approach used in previous work [43] is to refer to the OWASP pentesting
guide [51] to deploy honey elements in places where the attackers look in prior-
ity to find vulnerabilities. In the context of deceptive HTTP parameters, it is
likely that targeting the security-sensitive parts of the application (e.g., security-
relevant state changing requests as defined in [29]) would be more effective in
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attack detection. On the other hand, all the parameters are open to fuzzing and
tampering, in case they would lead to e.g., injection vulnerabilities.

An important point is that, the coherence between the API endpoints must be
taken into consideration while placing the deceptive parameters. Moreover, they
should follow the application logic, e.g., if an endpoint creates a new resource
(e.g., via POST method) with a deceptive parameter injected, the endpoint that
updates the resource (e.g, via PUT or PATCH method) should also include this
parameter. In future work, studies that infer producer-consumer relationships
between API endpoints (such as [20]) can help to improve the placement strategy
of honeytokens.

In this study, we deploy the deceptive parameters depending on where our
machine learning method performs the best. As we will explain in Section 3,
the parameters generated by our approach are coherent between different API
endpoints, as the machine learning algorithm returns the same output values for
the same set of input values.

2.5 Quantity of deceptive elements

A previous study suggests that a high quantity of deceptive elements might
tip off the attacker about deception and therefore reduce its effectiveness [43].
Another study [64] indeed finds that the effectiveness of deceptive elements might
reduce when the attacker is aware of deception, however, this awareness brings
additional impact such as pushing attackers to deviate from their regular attack
strategies.

In this study we also touch on this topic for a preliminary evaluation on the
impact of the number of deceptive parameters. More details about the experi-
ment and the results will be given in Sections 4 and 5.

2.6 Response strategy

For a robust deception effect it is important to design proper response actions
against parameter tampering, which will give the feeling that the deceptive el-
ement is a real, functional part of the application [64]. Possible approaches can
be to show fake error pages (e.g., faking an SQLi/LFI vulnerability [43]), fake
authentication pages, or returning HTTP status codes such as service unavail-
able or bad request, depending on the type of the parameter. More research
is needed to automatically determine a realistic response strategy for a given
deceptive parameter.

3 Our Approach

As mentioned earlier, we aim to automate the generation of deceptive HTTP
parameters that are in agreement with the context of the web application to
be protected. For such tasks, the Natural Language Processing (NLP) domain
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offers different techniques, such as specialized lists, lexical dictionaries and word
embeddings.

Specialized lists have the drawback of needing to be handcrafted, a process
which can be time-consuming and requires domain-specific knowledge. Lexical
dictionaries have been used in traditional NLP approaches. They are networks
of meaningfully and semantically related words and concepts (synsets) and pro-
vide graph representations of the relationships of a vocabulary. Nevertheless,
lexical dictionaries might not be able to keep up with the quick evolution of the
language, as well as with domain-specific jargon.

Finally, embeddings are vectorial representations of words mapped onto a re-
duced dimensionality space where similar words (embeddings) are close to each
other. The distance between these embeddings is often measured using the co-
sine similarity or any other distance between vectors. Due to their data-driven
nature, embeddings are able to capture the relationships between words in spe-
cific contexts. They were initially popularized in the recent years due to their
applications in NLP by using rather simple neural network architectures, such
as the ones proposed by word2vec [52] and GloVe [57]. More complex language
models have been developed in the last years (e.g. ELMo [58], BERT [33], AL-
BERT [48], RoBERTa [50]), many of which are available for download and offer
quick interfaces for their use [63]. Nevertheless, these models are often trained
on vast English text corpus coming from natural language sources as varied as
news articles, Wikipedia entries, literary [74,71] and web content [62] among
others. While they are useful for generic language understanding tasks, they can
struggle with applications which contain a big domain-specific vocabulary.

For this reason, some studies have concentrated their efforts in generating
application-specific language models, including those for biomedical [49], clinical
[17,46] or financial [69] applications. Outside the realm of natural languages,
embeddings have also been used to model programming languages both in a
sequence-of-tokens fashion (supported by the naturalness hypothesis [14]) or by
embedding elements in graph representations of code (e.g., abstract syntax trees
or control flow graphs) [16,28,31,24].

In this paper, we propose the use of embeddings of source code by treating
it in a sequence-of-tokens fashion. The choice was made to use the smaller and
simpler models like word2vec due to their less data-hungry nature and their
ease to train them compared to more complex models. Due to the very specific
nature of our application, we train our language model with a dataset specifically
created for this task.

3.1 Data Collection and Training

In order to create a domain-specific dataset that will capture the terminology and
technical context of web applications, we use the source code of web applications
available at public GitHub repositories. We start with a list of public GitHub
Java repositories with more than 5 stars (watchers), which was made available
by Chen et al. [30] and includes 83,082 repository URLs collected from GHTor-
rent [41] database (last updated on 2019-06-01). Among these, we remove the
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repositories that include android or mobile keywords in the repository name,
and focus on the repositories with at least 15 stars, which reduces the list to
38,376 URLs.

As our purpose is to generate HTTP parameters for web APIs, we try
to limit the training data to the repositories with web application relevant
source code. We do this in a coarse-grained way, by pruning the dataset to
only contain the repositories that include web related libraries: We download
each repository and look for “import” statements for library names such as
org.springframework.web, javax.servlet, org.apache.http, httpcomponents
and okhttpclient. Finally, we end up with the source code from 10,324 repos-
itories, which corresponds to 4,002,776 Java files.

We further refine the Java files according to their name: The files that are
likely to not have a context related to the functionality of the application (e.g.,
util, filter, exception, config, parser, test) and the files that might
have a too specific context (e.g., coin, blockchain, droid, Activity) are
removed.

For each project, for each remaining Java file, we parse the file (using the
JavaLangParser Python library) to extract the relevant input to train the
word2vec model. While word2vec is normally trained with sentences from natu-
ral language, we construct the sentences as sequence-of-tokens collected from the
source code. In particular, each of the following items forms a separate sentence
by appending the relevant tokens together:

– Each method name (MethodDeclaration) and the names of method param-
eters

– Each class constructor (ConstructorDeclaration) and the names of construc-
tor parameters

– The names of the class fields (FieldDeclaration)
– All the variable names in the class (VariableDeclaration)

The motivation is that each of these sentences includes tokens that are likely
to belong to the same context. Note that, each token (method, parameter, vari-
able, or constructor name) is split by underscore or camel case (if such naming
convention was used), and then converted to lower case. An example of Java
source code and the set of sentences extracted from it can be found in Ap-
pendix A.1.

Post-processing: In each sentence, we remove the tokens that are specific
to the Java language, and tokens that do not carry any contextual meaning.1

Finally, we train the word2vec model using the Python gensim.models library,
with the default parameters.

Independently from this process, we also save all the variable names with
built-in types (e.g., String, boolean, int, array) for each project in a seperate csv
file. This corresponds to 8,844,562 variables. We later use this data to find the
most suitable parameter type for the generated deceptive parameter names.

1 These words are has, have, init, start, stop, get, set, main, create,

delete, update, read, add, remove, is, on, by, to, test, parse, write,

initialize, string, int, boolean, char.
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3.2 Generation of parameter names

To generate deceptive parameters for a target application, we assume to obtain
the API specification of the application to start with. In particular, we assume to
have an OpenAPI specification [54] as input. OpenAPI (formerly known as Swag-
ger [67]) specification aims to standardize the descriptions of RESTful APIs. In
addition, the Swagger project provides various tools for testing and development,
together with a specific user interface to view and try out the API (called Swag-
ger UI [12]). In our experiments, we use an alternative Swagger user interface
called Bootprint [8], as it outputs a static HTML page with a simpler design
that is more appropriate for our purpose.

Once we have the Swagger specification (which is often in json or yaml for-
mat), we flatten [66] the file and convert it to the csv format, where we have
each HTTP parameter and the related information (endpoint, HTTP method,
name and type) in one row. Note that, endpoints may pair with multiple differ-
ent HTTP methods, and each endpoint-method pair is likely to have multiple
parameters. Figure 1 shows an example API specification of an endpoint-method
pair in json format (a), together with how it looks on Bootprint-Swagger UI (b)
and our conversion to csv format (c).

"/carts/{id}/ entries": {
"post": {

"operationId": "postCartEntry",
"parameters": [{

"type": "string",
"name": "id",
"in": "path"},

{
"type": "string",
"name": "productVariantId",
"in": "formData"},

{
"type": "integer",
"name": "quantity",
"in": "formData"

}]}}

(a) Swagger json file for the endpoint-
method pair

(b) Swagger UI

Endpoint Method Location Name Type

/carts/id/entries post path id string

/carts/id/entries post formData productVariantId string

/carts/id/entries post formData quantity integer

(c) API endpoint converted to csv

Fig. 1: Example Swagger input for the POST method of /carts/{id}/entries
endpoint.
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Next, we use our word2vec model to generate deceptive elements for the
endpoint-method pairs in the API. In particular, we use the most similar()

method of word2vec library to get the top n words that are the most similar to
a list of existing elements. We form the existing elements list depending on the
location of the HTTP parameter:

– Path parameters: Path parameters are located in the URL path of an end-
point, and often point to a specific resource [9]. We only attempt to embed a
deceptive path parameter to the endpoints that already have at least one path
parameter. First, we group the endpoints up to their very first path parameter.
Next, within each group, we collect all the endpoint URLs, split the words by
underscore or camel case if necessary, and form our existing elements list. If
this approach does not yield any proper output (due to the thresholds that we
will explain later), an alternative approach is to collect the first level URL com-
ponents of all endpoints as the existing elements list. Note that, the generated
deceptive path parameter will be added to all the endpoints in this group, to
keep the consistency of parameters between endpoints.
– Query or body parameters: Query parameters are located at the end of
the URL, after a question mark (e.g., ‘?name1=value1&name2=value2’ format).
Describing the body parameters, on the other hand, is a bit more complex: The
earlier version of OpenAPI (v2) differentiates between the formData parameters
that describe the payload of a request, and the body parameters that describe
an object with a data structure [10]. However, the last version (OpenAPI v3)
categorizes both of them under the RequestBody type [11].

We process the query and body parameters, for each of the endpoint-method
pairs: We take the existing query or body parameter names, in addition to the
tokens from the URL path of the related endpoint (again splitted by underscore
or camel case, if necessary). Note that, as our word2vec model is deterministic
once it is trained, it will generate the same output for the same set of existing
elements. This allows us to preserve the consistency between different endpoints:
For instance, two different endpoints that update an address object with the
same body parameters will also be assigned the same deceptive parameter.

Finally, our algorithm aims to insert deceptive parameters only if it has a high
‘confidence’ that the generated element will fit in the context of the endpoint-
method pair. For this, we implement the following four steps:

(i) Making sure that the existing elements list contains sufficient input: For query
and body/form parameters, we set a threshold for the minimum number of
existing elements: If there are fewer elements than this threshold, we choose
to not generate a deceptive parameter for the given endpoint-method pair and
parameter location. For path parameters, we also require a certain number of
endpoints per group, to be able to assign a deceptive parameter to this group.
(ii) Making sure that the input words are known to the model: It is possible
that some of the existing elements will not be present in the vocabulary of
our word2vec model, as our training dataset may not contain them. Thus, our
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second threshold becomes the minimum known words ratio: the ratio of existing
elements that are present in the vocabulary. If these two thresholds are met, we
take the top n most similar words as our candidate deceptive parameters.
(iii) Post-processing to check if the candidate parameters have sufficient similar-
ity to existing elements: We compute the average similarity score of candidate
parameters to the existing elements. (The similarity scores are returned by the
most similar() method.) If this value is less than our average similarity score
threshold, we choose to not insert any deceptive parameter for this endpoint-
method pair and parameter location.
(iv) Post-processing to avoid repeating parameters: Finally, we remove the candi-
date deceptive parameters that are morphologically too close to any of the exist-
ing elements. For example if “paymentid” is an existing element and our model
generates “paymentnum”, we remove “paymentnum” from the candidate list.
For this, we use the ratio() method from the difflib.SequenceMatcher [3]
class in Python, to compute a measure of similarity between two sequences. We
set a sequence matching score threshold to decide whether a candidate should
be removed. After all these steps, the final deceptive parameter becomes the first
element in the candidate deceptive elements list, having the highest similarity
score value.

Fine tuning the algorithm: We tried our algorithm on 17 real-world Swag-
ger API documentations that we collected online (using Google dorks such as
intitle:“swagger.json” site:github.com). Note that, we make sure that the col-
lected APIs do not overlap with the GitHub repositories used in our training.
By experimenting with these APIs to generate deceptive elements, we come up
with a set of threshold values that provide a good starting point. Table 1 gives
these threshold values, which we also use for evaluating the performance of our
method in the next section.

On a final note, we also assign a type (e.g., int, boolean, string) to the
generated deceptive elements using the dataset of more than 8 Million variables
collected in Section 3.1. To infer a type, we first look for an exact match between
the generated parameter name and the variable names dataset. If it does not
exist, we again use the SequenceMatcher class with a similarity score threshold
of 0.8. This algorithm was able to infer a type for almost all of the parameter
names in our initial experiments.

In Appendix A.2, we provide examples of the deceptive parameters generated
by our model for two different endpoint-method pairs.

Threshold Value Threshold Value

n 5 known words ratio >0.7
number of endpoints ≥2 average similarity score >0.6
number of existing elements ≥2 sequence matching score >0.5

Table 1: Thresholds and values that affect the generation of parameters.
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4 Evaluation

In this section we aim to evaluate the performance of our method in generat-
ing indistinguishable deceptive parameters. A common evaluation method that
is also used in previous work [25,60] is to ask human subjects to differenti-
ate deceptive elements from genuine elements. However, while in the previous
work the human subjects were informed upfront that 50% of elements they will
evaluate are deceptive, we do not give any tips about the number of deceptive
parameters. Moreover, we present the subjects with real-world APIs using the
Bootprint Swagger UI, so that they can get a sense of the application and thor-
oughly observe all the endpoint-method pairs, parameters and their types. We
use a separate questionnaire where we list all the distinct parameter names (cat-
egorized by location such as query, form, path), and ask the subjects to mark
the parameters that they think are deceptive.

Although this evaluation method does not allow participants to interact with
a running instance of the application, it allows them to really focus on the names
of the parameters. In fact if they were able to interact with the application,
they could rely on additional criteria (e.g. value of the parameter, response to
tampering) to decide if a parameter is deceptive or not. Thus, presenting the
participants with a static API specification better fits our purpose of evaluating
the indistinguishability of parameter names.

4.1 Preparation of the API specifications

For this experiment, we choose two APIs among the set of 17 real-world APIs
mentioned in the previous section, following the below criteria:

– The APIs should have more or less equal number of endpoints and parame-
ters to achieve more reliable results in statistical tests.

– The applications’ context should be easy to grasp so that the participants
can make more informed decisions (i.e., reducing the randomness that might
emerge from not understanding the API).

– The number of API parameters should be reasonable for manual evaluation;
to not overwhelm and distract the human subjects, and to make the survey
feasible to complete in a reasonable amount of time.

In particular, the two APIs we choose include (i) a cloud integration API
for an e-commerce application [1], and (ii) a community based laboratory plat-
form for various professions [4]. The first one has 63 distinct parameters and 38
endpoint-method pairs, and the second one has 74 distinct parameters and 33
endpoint-method pairs.

To prepare the APIs for the experiment, we first anonymize the specification,
removing the application name, all descriptions, and fields ignored by our study
such as response status2. Then we generate the deceptive parameters using the

2 Full list of fields removed from Swagger: “info”, “description”, “host”, “tags”, “sum-
mary”, “responses”, “definitions”, “enum” , “example”, “security”, “securityDefini-
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method described in previous section. We insert the generated parameters back
into the Swagger specification, so that the Bootprint Swagger UI can display
them. Our algorithm generates 8 deceptive parameters for e-commerce and 9 for
the laboratory platform. We will call this the default mode, and will denote the
APIs as E-CommerceD and Lab-PlatformD, respectively.

In addition, our experiment also aims to measure the effect of (i) high quan-
tity and (ii) conspicuous (i.e., easily visible, obvious, attracting attention [27])
deceptive parameters. For this, we decide to divide the participants into two
groups: Each group is presented 2 applications, one of it with the default mode,
and the other with one of the additional characteristics (either higher quantity
of parameters, or very conspicuous parameters added). Table 2 shows various
statistics on the number of distinct deceptive parameters and affected endpoint-
method pairs for the API variants used in our experiment.

High quantity of deceptive parameters: We apply this variant to the
e-commerce application, denoted with E-CommerceQ. To have a significantly
higher number of deceptive parameters compared to the default mode (which
is E-CommerceD), we first use the additional results generated by our model
(i.e., more parameter names from the candidate deceptive parameters list). With
this, we obtain 6 more parameters in addition to the 8 parameters generated
in default mode. However, while we want this API variant to have statistically
significantly higher number of deceptive elements, our model was not able to
generate that many parameter names, as we apply several thresholds to choose
the best candidates. Thus, we have added 15 additional, manually chosen realistic
parameters.

To show that E-CommerceQ has significantly more deceptive parameters
compared to E-CommerceD, we employ two-proportions Z-tests: Looking at the
ratio of (the number of distinct deceptive parameters) / (the total number of
distinct parameters), we find a z-score of -3.0609 and p-value of .00222. Thus,
the result is significant at a confidence level of 95%. Moreover, in terms of the
ratio of (the number of endpoint-method pairs with deceptive elements) / (the
total number of endpoint-method pairs), we also show a statistically significant
difference (z-score=-1.9742, p-value=.02442, significant at p<.05).

Conspicuousness of deceptive parameters: We use this API variant in
the laboratory platform application, denoted as Lab-PlatformC . To manually
add conspicuous deceptive parameters to the API (in addition to the realistic
ones), we use two different strategies:

– Parameters that look too enticing and do not follow the naming conven-
tion of the application (e.g., use of camelcase instead of underscore, up-
percase letters): Examples are MakeAdmin, FullPrivileges, ADMIN PERM,
cl4ssifi3d ID.

– Parameters that do not have any meaning or that are out-of-context of the
application: Examples are yoyo, pysantx, vv, disclosed.

tions”, “x-example”, “minimum” , “maximum”, “readOnly”, “maxLength”, “min-
Length” , “pattern”, “required”
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To make sure that the parameters are indeed conspicuous, we made an initial
evaluation on 7 participants, presenting them a preliminary version of the survey
and asking them to mark the parameters that they think are deceptive. All
participants marked the conspicuous parameters as deceptive. Note that these
participants who were involved in the initial evaluation were not invited to the
real experiment.

# distinct honeytokens →
# endpoint-method pairs

Path Query Form Body
# dist. parameters:
honeytokens / total

# endpoint-method pairs:
with honeytokens / total

E-CommerceD

(Survey I)
1 → 19 - 5 → 4 2 → 2 8 / 71 (11%) 22 / 38 (58%)

E-CommerceQ

(Survey II)
2 → 19 3 → 3 14 → 11 10 → 4 29 / 92 (32%) 30 / 38 (79%)

Lab-PlatformD

(Survey II)
2 → 10 1 → 1 2 → 3 4 → 8 9 / 83 (11%) 19 / 33 (57%)

Lab-PlatformC

(Survey I)
5 → 10 1 → 1 4 → 3 7 → 8 17 / 91 (19%) 19 / 33 (57%)

Table 2: Breakdown of the API variants: showing the distinct number of honey-
tokens, affected endpoint-method pairs, and their ratios to the total number of
parameters and endpoint-method pairs.

4.2 Preparation of the surveys

Our experiment consists of two survey versions. Survey I contains E-CommerceD

and Lab-PlatformC APIs, and Survey II contains E-CommerceQ and Lab-PlatformD.
Note that participants were not aware that there were two different versions of
the survey. We advertised the survey with a single URL that redirects to a dif-
ferent version of the survey each time it is requested. We changed the redirection
rules from time to time, to ensure that both versions will have the same number
of participants.

Both surveys start with a section that describes the purpose of the survey.
In particular, it states the following:

In this experiment, you will be presented with 2 different application
APIs that include a number of honey parameters. We will ask you to
identify the parameters that you think are deceptive (i.e., if you were to
attack this application, you would avoid tampering those parameters to
avoid being detected).



Title Suppressed Due to Excessive Length 15

Although we anonymize the APIs beforehand, we inform the participants that
they are real-world APIs, and ask them to not search for the original APIs online
for the sake of the validity of the study.

The first three questions of the survey aim to learn about participants’ profile
(current job title) and their experience on information security and deception
technology. Then we have a different section for each application, where we first
give a link to the Bootprint Swagger UI of the API. We then ask participants
to identify the purpose of the API, and to rate their overall understanding of
the purpose of the endpoints. Finally, we list all the distinct parameter names
categorized by their location (path, query, form, body) and ask the participants
to mark if it is deceptive or genuine. Note that, by default all answers are set
to genuine, to save the participants from clicking too many times. We present
several screenshots from the survey (including the complete description text) in
the Appendix Section A.3.

4.3 Participants

We used snowball sampling to reach security experts. We advertise the survey
mainly in two communities: First, among the security researchers, experts and
enthusiasts in a large software company and second, among the computer secu-
rity PhD students of a graduate school. Additionally, we advertise it on social
media (Twitter).

Note that the survey description warns the participants about an estimated
duration of 30 minutes, which was determined during the initial evaluation phase.
Participation is completely on a voluntary basis, without any compensation.
Overall, our advertisement is estimated to reach at least a few hundred people
and the survey received answers between April 6 and May 24, 2021.

5 Results

We received 42 responses, which correspond to 21 participants for each version
of the survey (Survey I & II). This number of responses allows us to show the
effectiveness of our method and to make interesting observations.

5.1 Participants’ profile

Majority of participants consist of software/web developers (19%), security re-
searchers working in industry (17%) and MSc students doing internships (17%).
Moreover, some PhD students (11%), postdocs, and professors (10%) have also
answered the survey. 5 participants did not answer the question about their
job title. Participants rate their information security experience as 3.5±1.1 on a
scale from 1 to 5. Moreover, they rate their knowledge on deception technology
as 2.4±0.9. Overall, the participants seem to have an above average experience
in information security, and an average level of familiarity with deception tech-
nology.
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5.2 Participants’ understanding of the APIs

In a multi-choice question, we first ask participants to identify the purpose of the
API. All participants correctly identified both the e-commerce and the labora-
tory platform applications. Then, we ask participants to rate their understanding
of the purpose of API endpoints on a scale from 1 to 5. Participants seem to
have a good understanding of the e-commerce endpoints (on average 4±0.6 for
E-CommerceD and 4±0.5 for E-CommerceQ) and a fair to good understanding of
the endpoints of the laboratory platform (on average 3.6±0.6 for Lab-PlatformD

and 3.4±0.9 for Lab-PlatformC).

5.3 Indistinguishability of deceptive parameters

To see if our method was able to generate deceptive parameters that are indistin-
guishable from the genuine application parameters, we analyze the results from
E-CommerceD (Survey I) and Lab-PlatformD (Survey II). In particular, we com-
pute a detection rate for each parameter, that is the ratio of participants that
marked this parameter as deceptive. Then, we compare the detection ratios of
the group of deceptive parameters and the group of genuine parameters: We use
Welch’s t-test as the groups have unequal sample sizes and unequal variances [5].

Detection rate statistics Welch’s t-test (p <.05)

Deceptive Genuine
E-CommerceD (Survey I) 24±13 18±14 t=1, p=.34 (Not significant)
Lab-PlatformD (Survey II) 26±22 12±10 t=1.8, p=.1 (Not significant)

Table 3: Detection rate statistics for deceptive and genuine parameters for the
APIs in default mode.

Table 3 shows the detection rate statistics and the results of Welch’s t-tests
for both applications. Although detection rates of deceptive elements
are slightly higher, we do not observe a statistically significant dif-
ference in comparison to the detection rates of genuine parameters,
at a confidence level of 95%. This shows that our method is able to generate
indistinguishable deceptive parameters.

Previous work suggests that a “high-quality honeytoken” cannot be distin-
guished from a real token, even by the experts in relevant field [25]. Thus, the
fact that 71% of our participants are security professionals or web developers
increases confidence in the reliability of our results.

5.4 Impact of the quantity of deceptive parameters

In this section we aim to answer the following question: Do participants mislabel
(i.e., fail to detect) more deceptive parameters, when there are significantly more
of them?
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For each participant, we compute the ratio of deceptive parameters that
they correctly labeled. We also compute the ratio of parameters that they label
as deceptive, among all parameters. This second metric refers to participants’
expectation (or assumption) on the quantity of deceptive elements.

Ratio of labeled honeytokens Ratio of labeled parameters in total

E-CommerceD (Survey I) 23±16 % 19±8 %
E-CommerceQ (Survey II) 25±19 % 17±13 %

Table 4: Average ratios of parameters that are labeled as deceptive, among (i)
honeytokens and (ii) all parameters.

Table 4 shows that regardless of the quantity of honeytokens, par-
ticipants label more or less the same percentage of honeytokens as
deceptive (∼23 to 25%). Thus, in E-CommerceD on average 6 of the 8 decep-
tive parameters remain undetected by participants, while in E-CommerceQ, 22
of 29 are undetected. Moreover, participants’ expectation of the ratio of
deceptive parameters (among all parameters) remains rather constant
even when there are statistically significantly more honeytokens (∼17
to 19%). This means that, when there is a larger quantity of realistic deceptive
elements, there will be more elements that will remain undetected. On the other
hand, generating a very large number of realistic deceptive elements remains a
challenge. As discussed in Section 4.1, we used a semi-manual approach, as our
model was able to generate a limited number of high quality deceptive elements.

Finally, we also compare the detection rates of deceptive parameters in E-
CommerceQ that were automatically generated by our model (14 parameters)
and that were manually created by us (15 parameters), to see how our approach
compares to manual selection. Average detection rate is found to be 21±9%
for automated honeytokens, and 23±11% for manual honeytokens. Applying a
Welch’s t-test, we do not see a significant difference between detection rates
(t=-0.44, p=.66). Thus, we can conclude that automatically generated pa-
rameter names were as realistic as manually selected ones.

5.5 Impact of the conspicuous deceptive parameters

In this section we aim to answer the following question: Do participants mislabel
(i.e., fail to detect) more deceptive parameters, when there are some very ob-
vious (conspicuous) honeytokens added as extra? The idea is that conspicuous
honeytokens might help to hide realistic honeytokens, by attracting participants’
attention.

Table 5 shows that, if we exclude the conspicuous parameters in Lab-PlatformC ,
participants label more or less the same percentage of honeytokens as deceptive
(∼25 to 26%) in both Lab-PlatformD and Lab-PlatformC . Moreover, partici-
pants’ expectation of the ratio of deceptive parameters again remains more or
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Ratio of labeled honeytokens Ratio of labeled parameters in total

Lab-PlatformD (Survey II) 26±16 % 13±10 %
Lab-PlatformC (Survey I)
(excluding conspicuous)

25±14 % 12±7 %

Table 5: Average ratios of parameters that are labeled as deceptive, among (i)
honeytokens and (ii) all parameters.

less constant (∼12 to 13%). Thus, we do not observe any significant impact
of adding conspicuous honeytokens on further disguising the realistic
honeytokens.

On the other hand, a significantly higher number of participants label the
conspicuous honeytokens as deceptive (on average, 72±11%), in comparison to
the realistic honeytokens (on average, 24±30%) in Lab-PlatformC (Welch’s t-
test: p=.001). Thus, we believe that conspicuous honeytokens can be used
to tip off the attacker about the presence of deception, in order to enable
the deception awareness effect that we will discuss next.

5.6 Deception awareness effect

In this section, we look at the ratio of genuine parameters that are labeled as de-
ceptive by the participants. On average, E-CommerceD and E-CommerceQ have
18±8% and 15±11% of the genuine parameters mislabeled, respectively. These
ratios are 12±10% and 11±7% for Lab-PlatformD and Lab-PlatformC . Thus,
we observe that at least 10% of genuine parameters were marked as
deceptive across all APIs, which means that participants would avoid tam-
pering with those parameters in an attack scenario. We can interpret this as the
effect of deception awareness. Previous studies already observe various benefits
of informing attackers about the presence of deception, such as compelling them
to modify their attack behavior, impeding the attack progress, and deteriorating
attackers’ cognitive and psychological state [64,35]. Our results demonstrate yet
another benefit of deception awareness, that is, to masquerade the real applica-
tion elements to look like traps.

6 Limitations and Discussion

Method: In this study we only considered the source code of Java web applica-
tions from public GitHub repositories to train the model. However, it is possible
to enrich the model with other codebases and projects using different web tech-
nologies (e.g., PHP, Node.js). Note that, the number of high quality parameters
that can be generated by the model depends on the richness of the training data.
Another limitation of our approach is that it is not able to generate compound
parameter names. This can be done as a manual post-processing step (e.g., by
adding a common prefix or suffix to some parameter names), or it would require
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to train a model using the compound words as single words, if a proper training
set is available. In addition, although we only used word2vec, combining it with
other NLP approaches (discussed in Section 3) is also possible.

Evaluation: The results of our evaluation survey only provide insights about
whether the participants were able to distinguish between the generated param-
eter names and the names of genuine application parameters. Thus, these results
should not be considered as a measurement of the effectiveness of deceptive el-
ements in attack detection. On the other hand, it is important to note that
the deceptive parameters mainly aim to detect attacks via attackers’ interaction
(e.g., tampering the parameter), as opposed to the traditional honeypots that
aim to waste attackers’ time and resources. This means that, as soon as an at-
tacker interacts with a deceptive parameter (e.g., with a fuzzing tool), he will be
detected and the application will respond accordingly (e.g., by blocking the re-
quest or routing to a clone system). Thus, having realistic deceptive parameters
becomes a first requirement to ensure the effectiveness of deception.

As mentioned in Section 4.2, in the evaluation survey we only have deceptive
and genuine options to choose between. Thus, participants are forced to make a
choice even when they are not sure about the answer. In fact, we have received
a few post-survey comments where the participants found some parameters to
be implausible, but they were not sure if it was just due to bad API design
practices, or due to deception. For instance, one participant stated that:

Some of these APIs look off from a programming perspective. Why
would you include <variable> as a query string when it might be more
efficient to use it elsewhere?

Another participant said:

I would be extra careful in a situation like this and mark things [that
maybe are not deceptive] as deceptive just in case. Taking into account
that programmers are not perfect, they may create parameters that are
not needed. So I think this is not needed, but is it because it is deceptive
or it was done like this in reality... My general approach when doing
tampering is, just touch what you are sure of.

These comments imply a few points: First, it is likely that there will always
be a suspicion about implausible-looking elements. Second, as also discussed in
Section 2.4, it is important to keep the coherence between API endpoints and
imitate realistic functionality for the generated deceptive elements. Finally, we
believe that obliging participants to take a decision is a more realistic approach,
as in a real attack scenario they would need to make a decision to tamper or
not. In fact, previous work observes via a CTF-based experiment that, although
most participants are initially very careful to not touch the suspicious-looking
elements, they give up on such precautions after some time, if they cannot find
an attack vector to progress [64].
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7 Related Work

While there are many studies that aim to generate various deceptive content or
honey elements, we focus on the ones that relate to web application security.

HoneyGen [25] aims to create relational database with fake entries, based on
the rules extracted from a real database. For evaluation, the method is applied
on a database from a real-world dating website, to create fake profiles with
different personal information attributes. The experiment involved 30 pairs of
profiles, each pair having one real and one fake persona. The 109 participants
who joined the experiment were unable to distinguish the fake profiles that
have high similarity to the real profiles. B.Hive [59], as discussed in Section 2.1,
aims to generate honey form field names using a dataset of form fields collected
from top websites. While this approach is limited to form parameters from pre-
authentication pages, our approach targets all types of HTTP parameters and a
wide range of application contexts. A more recent study [22] proposes to allow
the user to enrich the UI of a web application with custom honey HTML elements
(e.g., link, button, icon), via a browser extension. The idea is that the genuine
users would be aware of these ‘tripwires’ (and not interact with them), but an
attacker could easily click on them once he gains access to the account. While
the names of the honey HTML elements are ideally chosen by the user, authors
also implement a suggestion tool based on a Markov model of URLs gathered
from the Common Crawl [2] dataset. However, the paper does not provide an
evaluation on the quality of the suggested names.

BogusBiter [73] proposes to generate honey credentials that will be fed into
phishing pages to conceal the real credentials of the user. The idea is to start with
an initial set of credentials, and generate additional credentials by substituting
certain characters of the username and password with different characters, each
time. Other relevant studies propose different approaches for password guess-
ing, based on a combination of specialized lists, lexical dictionaries and word
embeddings [53] or deep learning techniques [45].

Finally, several studies aim to detect parameter tampering by looking at input
validation failures or inconsistencies between client and server state [26,65,40].
Our work is complementary to these approaches.

8 Conclusion

This work automates the generation of realistic deceptive parameter names for
different types of HTTP parameters. We demonstrate the effectiveness of our
method via a survey based experiment, and find that the participants anticipate
a certain ratio of elements to be deceptive, regardless of the actual quantity or
enticement level of the honeytokens. Additionally, we observe that at least 10%
of genuine API parameters were marked as deceptive by the participants, which
demonstrates the potential benefit of informing the attackers about the presence
of honeytokens. Finally, we provide various directions for future work by looking
into the challenges that needs to be addressed for a complete automation of API
layer deception.
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A Appendix

A.1 Example construction of sentences from Java source code

Example Java sourcecode

pub l i c c l a s s L i v e P r o f i l e {

p r i v a t e f i n a l S t r ing id ;
p r i v a t e f i n a l S t r ing name ;
p r i v a t e f i n a l S t r ing f i rstName ;
p r i v a t e f i n a l S t r ing lastName ;
p r i v a t e f i n a l S t r ing gender ;
p r i v a t e f i n a l S t r ing emai l ;
p r i v a t e St r ing l i n k ;
p r i v a t e St r ing l o c a l e ;
p r i v a t e St r ing updatedTime ;

pub l i c L i v e P r o f i l e ( S t r ing id , S t r ing name , S t r ing
f irstName , S t r ing lastName , S t r ing gender ,

S t r ing email , S t r ing l o c a l e ) {
t h i s . id = id ;
t h i s . name = name ;
t h i s . f i r stName = firstName ;
t h i s . lastName = lastName ;
t h i s . gender = gender ;
t h i s . emai l = emai l ;

}
}

Extracted sentences to train the model
live profile id name first name last name gender email locale

id name first name last name gender email link locale updated time

A.2 Example output of the model

– Endpoint-Method pair: /products/search - GET
Existing query parameters:

−Name− −Type− −Location−
t ex t s t r i n g query
f i l t e r array query
s e l e c t e d F a c e t s array query
queryFacets array query
s o r t array query
o f f s e t i n t e g e r query
l i m i t i n t e g e r query
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Candidate deceptive parameters (n=5): sorts, filters, filtered, criteria,

facet

Remaining parameters after the post-processing steps: criteria
Recommended type for the selected honeytoken ‘criteria’: string

– Endpoint-Method pair: /carts - POST
Existing form parameters:

−Name− −Type− −Location−
currency s t r i n g formData
productVar iantId s t r i n g formData
quant i ty i n t e g e r formData

Candidate deceptive parameters (n=5): price, sku, uom, retail, taxed

Remaining parameters after the post-processing steps: price, sku, uom,
retail

Recommended type for the selected honeytoken ‘price’: int

A.3 Survey - Introduction message, personal data collection and
example form parameters from Lab-PlatformD application
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A.4 Partial Swagger UI for endpoints related to the form
parameters above
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